179 research outputs found

    Visual ecology of aphids – a critical review on the role of colours in host finding

    Get PDF
    We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring

    Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors

    Get PDF
    The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover

    Adaptations in antagonist co-activation: Role in the repeated-bout effect

    Get PDF
    Eccentric exercise results in an adaptation which attenuates muscle damage from subsequent exercise—termed the “repeated-bout effect (RBE).” Purpose: Study examined antagonist co-activation and motor-unit recruitment strategy, assessed via dEMG, concomitant to the RBE. Methods: Nine participants performed 5 sub-maximal isometric trapezoid (ramp-up, hold, ramp-down) contractions at force levels corresponding to 50% and 80% of maximal isometric strength (MVC). Surface EMG signals of the biceps brachii were decomposed into individual motor-unit action potential trains. The relationship between mean firing rate (MFR) of each motor-unit and its recruitment threshold (RT) was examined using linear regression. Eccentric exercise was then performed until biceps brachii MVC had decreased by ~40%. Surface EMG of the biceps and triceps were collected during eccentric exercise. MVC, range-of-motion (ROM), and delayed onset muscle soreness (DOMS) were measured 24-hours, 72-hours, and 1-week following eccentric exercise. Three weeks later all procedures were repeated. Results: Changes in MVC (-32±14% vs -25±10%; p = 0.034), ROM (-11% vs 6%; p = 0.01), and DOMS (31.0±19mm vs 19±12mm; p = 0.015) were attenuated following the second bout of exercise. Triceps EMG was reduced (16.8±9.5% vs. 12.6±7.2%; p = 0.03) during the second bout of eccentric exercise. The slope (-0.60±0.13 vs -0.70±0.18; p = 0.029) and y-intercept (46.5±8.3 vs 53.3±8.8; p = 0.020) of the MFR vs. RT relationship was altered during contractions at 80% of MVC prior to the second bout of eccentric exercise. No changes were observed at 50% of MVC. Conclusion: A reduction in antagonist co-activation during the second bout of eccentric exercise suggests less total force was required to move an identical external load. This finding is supported by the increased negative slope coefficient and an increased y-intercept of the linear relationship between RT and MFR.Funded by University of Oklahoma Graduate College Robberson Grant.Ye

    Ace Lake: three decades of research on a meromictic, Antarctic lake

    Get PDF
    Ace Lake (Vestfold Hills, Antarctica) has been investigated since the 1970s. Its close proximity to Davis Station has allowed year-long, as well as summer only, investigations. Ace Lake is a saline meromictic (permanently stratified) lake with strong physical and chemical gradients. The lake is one of the most studied lakes in continental Antarctica. Here we review the current knowledge of the history, the physical and chemical environment, community structure and functional dynamics of the mixolimnion, littoral benthic algal mats, the lower anoxic monimolimnion and the sediment within the monimolimnion. In common with other continental meromictic Antarctic lakes, Ace Lake possesses a truncated food web dominated by prokaryote and eukaryote microorganisms in the upper aerobic mixolimnion, and an anaerobic prokaryote community in the monimolimnion, where methanogenic Archaea, sulphate-reducing and sulphur-oxidizing bacteria occur. These communities are functional in winter at subzero temperatures, when mixotrophy plays an important role in survival in dominant photosynthetic eukaryotic microorganisms in the mixolimnion. The productivity of Ace Lake is comparable to other saline lakes in the Vestfold Hills, but higher than that seen in the more southerly McMurdo Dry Valley lakes. Finally we identify gaps in the current knowledge and avenues that demand further investigation, including comparisons with analogous lakes in the North Polar region

    Adaptations in biceps brachii motor unit activity after repeated bouts of eccentric exercise in elbow flexor muscles

    No full text
    The purpose of this study was to examine changes in motor unit activity in the biceps brachii muscle after an initial (Bout 1) and repeated (Bout 2) session of eccentric exercise separated by 1 wk. Eight subjects (aged 22 ± 2 yr) participated in experimental assessments of neuromuscular function obtained before, immediately after, 24 h after, and 7 days after each exercise bout. Each experimental session involved assessments of elbow-flexor force and biceps and triceps brachii electromyography during maximum voluntary isometric contractions (MVCs) and constant-force isometric contractions at five contraction intensities (5-50% MVC), along with indicators of muscle damage (muscle pain and passive tension). In addition, motor unit recordings were obtained before exercise, 7 days after Bout 1, and 24 h after Bout 2 to assess motor unit synchronization and recruitment thresholds. Following a single eccentric exercise session that elicited significant indicators of muscle damage, we found a 57% increase in motor unit synchronization 7 days later compared with before exercise, despite the recovery of maximal strength, soreness, and relaxed elbow-joint angle at this time. Furthermore, a second bout of the same eccentric exercise resulted in reduced indicators of muscle damage and a decline in the strength of motor unit synchronization (24 h after Bout 2) toward levels observed before both exercise sessions. In contrast, no changes in motor unit recruitment thresholds were observed 7 days after Bout 1 or 24 h after Bout 2 compared with before exercise. The increased motor unit synchronization 7 days after a single eccentric exercise session provides new evidence of changes in motor unit activity during the putative repair and regeneration phase following eccentric muscle damage.Tamara J. Dartnall, Michael A. Nordstrom, and John G. Semmle
    corecore