2,458 research outputs found
Hybrid quantum repeater using bright coherent light
We describe a quantum repeater protocol for long-distance quantum
communication. In this scheme, entanglement is created between qubits at
intermediate stations of the channel by using a weak dispersive light-matter
interaction and distributing the outgoing bright coherent light pulses among
the stations. Noisy entangled pairs of electronic spin are then prepared with
high success probability via homodyne detection and postselection. The local
gates for entanglement purification and swapping are deterministic and
measurement-free, based upon the same coherent-light resources and weak
interactions as for the initial entanglement distribution. Finally, the
entanglement is stored in a nuclear-spin-based quantum memory. With our system,
qubit-communication rates approaching 100 Hz over 1280 km with fidelities near
99% are possible for reasonable local gate errors.Comment: title changed, final published versio
Multi-spin dynamics of the solid-state NMR Free Induction Decay
We present a new experimental investigation of the NMR free induction decay
(FID) in a lattice of spin-1/2 nuclei in a strong Zeeman field. Following a
pi/2 pulse, evolution under the secular dipolar Hamiltonian preserves coherence
number in the Zeeman eigenbasis, but changes the number of correlated spins in
the state. The observed signal is seen to decay as single-spin, single-quantum
coherences evolve into multiple-spin coherences under the action of the dipolar
Hamiltonian. In order to probe the multiple-spin dynamics during the FID, we
measured the growth of coherence orders in a basis other than the usual Zeeman
eigenbasis. This measurement provides the first direct experimental observation
of the growth of coherent multiple-spin correlations during the FID.
Experiments were performed with a cubic lattice of spins (19F in calcium
fluoride) and a linear spin chain (19F in fluorapatite). It is seen that the
geometrical arrangement of the spins plays a significant role in the
development of higher order correlations. The results are discussed in light of
existing theoretical models.Comment: 7 pages, 6 figure
Photon Antibunching and Magnetospectroscopy of a Single Fluorine Donor in ZnSe
We report on the optical investigation of single electron spins bound to
fluorine donor impurities in ZnSe. Measurements of photon antibunching
establish the presence of single, isolated optical emitters, and
magneto-optical studies are consistent with the presence of an exciton bound to
the spin-impurity complex. The isolation of this single donor-bound exciton
complex and its potential homogeneity offer promising prospects for a scalable
semiconductor qubit with an optical interface.Comment: 3.1 pages, 3 figure
Design and Analysis of Communication Protocols for Quantum Repeater Networks
We analyze how the performance of a quantum-repeater network depends on the
protocol employed to distribute entanglement, and we find that the choice of
repeater-to-repeater link protocol has a profound impact on communication rate
as a function of hardware parameters. We develop numerical simulations of
quantum networks using different protocols, where the repeater hardware is
modeled in terms of key performance parameters, such as photon generation rate
and collection efficiency. These parameters are motivated by recent
experimental demonstrations in quantum dots, trapped ions, and nitrogen-vacancy
centers in diamond. We find that a quantum-dot repeater with the newest
protocol ("MidpointSource") delivers the highest communication rate when there
is low probability of establishing entanglement per transmission, and in some
cases the rate is orders of magnitude higher than other schemes. Our simulation
tools can be used to evaluate communication protocols as part of designing a
large-scale quantum network.Comment: 16 pages, 11 figure
Quantum Hall Charge Sensor for Single-Donor Nuclear Spin Detection in Silicon
We propose a novel optical and electrical hybrid scheme for the measurement
of nuclear spin qubits in silicon. By combining the environmental insensitivity
of the integer quantum Hall effect with the optically distinguishable hyperfine
states of phosphorus impurities in silicon, our system can simultaneously offer
nuclear spin measurement and robustness against environmental defects. 31P
donor spins in isotopically purified 28Si are often discussed as very promising
quantum memory qubits due to their extremely long decoherence times, and our
proposed device offers an effective implementation for such a quantum memory
system.Comment: 17 pages, 6 figure
Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light
We describe a system for long-distance distribution of quantum entanglement,
in which coherent light with large average photon number interacts dispersively
with single, far-detuned atoms or semiconductor impurities in optical cavities.
Entanglement is heralded by homodyne detection using a second bright light
pulse for phase reference. The use of bright pulses leads to a high success
probability for the generation of entanglement, at the cost of a lower initial
fidelity. This fidelity may be boosted by entanglement purification techniques,
implemented with the same physical resources. The need for more purification
steps is well compensated for by the increased probability of success when
compared to heralded entanglement schemes using single photons or weak coherent
pulses with realistic detectors. The principle cause of the lower initial
fidelity is fiber loss; however, spontaneous decay and cavity losses during the
dispersive atom/cavity interactions can also impair performance. We show that
these effects may be minimized for emitter-cavity systems in the weak-coupling
regime as long as the resonant Purcell factor is larger than one, the cavity is
over-coupled, and the optical pulses are sufficiently long. We support this
claim with numerical, semiclassical calculations using parameters for three
realistic systems: optically bright donor-bound impurities such as 19-F:ZnSe
with a moderate-Q microcavity, the optically dim 31-P:Si system with a high-Q
microcavity, and trapped ions in large but very high-Q cavities.Comment: Please consult the published version, where assorted typos are
corrected. It is freely available at http://stacks.iop.org/1367-2630/8/18
The efficiencies of generating cluster states with weak non-linearities
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes can be made
robust to detector loss, spontaneous emission and cavity mismatching but as a
consequence the overhead costs grow rapidly, in particular when considering
single photon loss. In contrast, our approach uses continuous variables and
highly efficient homodyne measurements. We present a two-qubit scheme, with a
simple bucket measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling. This leads to a "no-measurement" approach to building
cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing
Optical Detection of a Single Nuclear Spin
We propose a method to optically detect the spin state of a 31-P nucleus
embedded in a 28-Si matrix. The nuclear-electron hyperfine splitting of the
31-P neutral-donor ground state can be resolved via a direct frequency
discrimination measurement of the 31-P bound exciton photoluminescence using
single photon detectors. The measurement time is expected to be shorter than
the lifetime of the nuclear spin at 4 K and 10 T.Comment: 4 pages, 3 figure
- …
