181 research outputs found
Itinerant ferromagnetism in a two-dimensional atomic gas
Motivated by the first experimental evidence of ferromagnetic behavior in a
three-dimensional ultracold atomic gas, we explore the possibility of itinerant
ferromagnetism in a trapped two-dimensional atomic gas. Firstly, we develop a
formalism that demonstrates how quantum fluctuations drive the ferromagnetic
reconstruction first order, and consider the consequences of an imposed
population imbalance. Secondly, we adapt this formalism to elucidate the key
experimental signatures of ferromagnetism in a realistic trapped geometry.Comment: Accepted for publication in Phys. Rev.
Upper critical field in superconductors near ferromagnetic quantum critical points; UCoGe
We study the strong-coupling superconductivity near ferromagnetic quantum
critical points, mainly focusing on the upper critical fields . Based
on our simple model calculations, we discuss experimentally observed unusual
behaviors of in a recently discovered ferromagnetic superconductor
UCoGe. Especially, the large anisotropy between -axis and
-axis, and the strong-coupling behaviors in
are investigated. We also examine effects of
non-analytic corrections in the spin susceptibility on the superconductivity,
which can arise from effective long range interactions due to particle-hole
excitations.Comment: Proceedings of ICHE2010, Toky
Coherent multi-flavour spin dynamics in a fermionic quantum gas
Microscopic spin interaction processes are fundamental for global static and
dynamical magnetic properties of many-body systems. Quantum gases as pure and
well isolated systems offer intriguing possibilities to study basic magnetic
processes including non-equilibrium dynamics. Here, we report on the
realization of a well-controlled fermionic spinor gas in an optical lattice
with tunable effective spin ranging from 1/2 to 9/2. We observe long-lived
intrinsic spin oscillations and investigate the transition from two-body to
many-body dynamics. The latter results in a spin-interaction driven melting of
a band insulator. Via an external magnetic field we control the system's
dimensionality and tune the spin oscillations in and out of resonance. Our
results open new routes to study quantum magnetism of fermionic particles
beyond conventional spin 1/2 systems.Comment: 9 pages, 5 figure
Low temperature properties of the fermionic mixtures with mass imbalance in optical lattice
We study the attractive Hubbard model with mass imbalance to clarify low
temperature properties of the fermionic mixtures in the optical lattice. By
combining dynamical mean-field theory with the continuous-time quantum Monte
Carlo simulation, we discuss the competition between the superfluid and density
wave states at half filling. By calculating the energy and the order parameter
for each state, we clarify that the coexisting (supersolid) state, where the
density wave and superfluid states are degenerate, is realized in the system.
We then determine the phase diagram at finite temperatures.Comment: 5 pages, 4 figures, accepted for publication in J. Phys. Soc. Jp
Solitary waves in the Nonlinear Dirac Equation
In the present work, we consider the existence, stability, and dynamics of
solitary waves in the nonlinear Dirac equation. We start by introducing the
Soler model of self-interacting spinors, and discuss its localized waveforms in
one, two, and three spatial dimensions and the equations they satisfy. We
present the associated explicit solutions in one dimension and numerically
obtain their analogues in higher dimensions. The stability is subsequently
discussed from a theoretical perspective and then complemented with numerical
computations. Finally, the dynamics of the solutions is explored and compared
to its non-relativistic analogue, which is the nonlinear Schr{\"o}dinger
equation. A few special topics are also explored, including the discrete
variant of the nonlinear Dirac equation and its solitary wave properties, as
well as the PT-symmetric variant of the model
Re-examining the role of Drosophila Sas-4 in centrosome assembly using two-colour-3D-SIM FRAP
Centrosomes have many important functions and comprise a ‘mother’ and ‘daughter’ centriole surrounded by pericentriolar material (PCM). The mother centriole recruits and organises the PCM and templates the formation of the daughter centriole. It has been reported that several important Drosophila PCM-organising proteins are recruited to centrioles from the cytosol as part of large cytoplasmic ‘S-CAP’ complexes that contain the centriole protein Sas-4. In a previous paper (Conduit et al., 2014b) we showed that one of these proteins, Cnn, and another key PCM-organising protein, Spd-2, are recruited around the mother centriole before spreading outwards to form a scaffold that supports mitotic PCM assembly; the recruitment of Cnn and Spd-2 is dependent on another S-CAP protein, Asl. We show here, however, that Cnn, Spd-2 and Asl are not recruited to the mother centriole as part of a complex with Sas-4. Thus, PCM recruitment in fly embryos does not appear to require cytosolic S-CAP complexes
Many-flavor electron gas approach to electron-hole drops
A many-flavor electron gas (MFEG) is analyzed, such as could be found in a
multi-valley semiconductor or semimetal. Using the re-derived polarizability
for the MFEG an exact expression for the total energy of a uniform MFEG in the
many-flavor approximation is found; the interacting energy per particle is
shown to be -0.574447E_h a_0^3/4 m*^3/4 n^1/4 with E_h being the Hartree
energy, a_0 Bohr radius, and m^* particle effective mass. The short
characteristic length-scale of the MFEG motivates a local density
approximation, allowing a gradient expansion in the energy density, and the
expansion scheme is applied to electron-hole drops, finding a new form for the
density profile and its surface scaling properties.Comment: 11 pages, 5 figure
The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation
The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome
Structural basis for mitotic centrosome assembly in flies
In flies, Centrosomin (Cnn) forms a phosphorylation-dependent scaffold that recruits proteins to the mitotic centrosome, but how Cnn assembles into a scaffold is unclear. We show that scaffold assembly requires conserved Leucine Zipper (LZ) and Cnn-Motif 2 (CM2) domains that co-assemble into a 2:2 complex in vitro. We solve the crystal structure of the LZ:CM2 complex, revealing that both proteins form helical dimers that assemble into an unusual tetramer. A slightly longer version of the LZ can form micron-scale structures with CM2, whose assembly is stimulated by Plk1 phosphorylation in vitro. Mutating individual residues that perturb LZ:CM2 tetramer assembly perturbs the formation of these micron-scale assemblies in vitro and Cnn scaffold assembly in vivo. Thus, Cnn molecules have an intrinsic ability to form large, LZ:CM2-interaction-dependent assemblies that are critical for mitotic centrosome assembly. These studies provide the first atomic insight into a molecular interaction required for mitotic centrosome assembly
GUIDE: a randomised non-comparative phase II trial of biomarker-driven intermittent docetaxel versus standard-of-care docetaxel in metastatic castration-resistant prostate cancer (clinical trial protocol)
Objective: To determine the efficacy and safety of intermittent docetaxel chemotherapy guided by circulating methylated glutathione S-transferase Pi-1 (mGSTP1) in men with metastatic castration-resistant prostate cancer (CRPC).Patients and Methods: GUIDE (NCT04918810) is a randomised, two-arm, non-comparative phase-2 trial recruiting 120 patients at six Australian centres. Patients with Prostate Cancer Working Group-3 defined metastatic CRPC who are commencing docetaxel 75 mg/m2 q3w will be pre-screened for detectable mGSTP1 at baseline ± following two cycles of treatment. Those with detectable plasma mGSTP1 at baseline that becomes undetectable after two cycles of chemotherapy will be eligible for GUIDE. Prior to Cycle 4 of docetaxel, these patients are randomised 2:1 to one of two treatment arms: Arm A (cease docetaxel and reinstitute if mGSTP1 becomes detectable) or Arm B (continue docetaxel 75 mg/m2 q3w in accordance with clinician's usual practice). The primary endpoint is radiographic progression-free survival. Secondary endpoints include time on treatment holidays, safety, patient-reported outcomes, overall survival, health resource use, and cost associated with treatment. Enrolment commenced November 2021.Results and Conclusion: The results of this trial will generate data on the clinical utility of mGSTP1 as a novel biomarker to guide treatment de-escalation in metastatic CRPC
- …
