Structural Basis for Mitotic Centrosome Assembly in Flies.

Abstract

In flies, Centrosomin (Cnn) forms a phosphorylation-dependent scaffold that recruits proteins to the mitotic centrosome, but how Cnn assembles into a scaffold is unclear. We show that scaffold assembly requires conserved leucine zipper (LZ) and Cnn-motif 2 (CM2) domains that co-assemble into a 2:2 complex in vitro. We solve the crystal structure of the LZ:CM2 complex, revealing that both proteins form helical dimers that assemble into an unusual tetramer. A slightly longer version of the LZ can form micron-scale structures with CM2, whose assembly is stimulated by Plk1 phosphorylation in vitro. Mutating individual residues that perturb LZ:CM2 tetramer assembly perturbs the formation of these micron-scale assemblies in vitro and Cnn-scaffold assembly in vivo. Thus, Cnn molecules have an intrinsic ability to form large, LZ:CM2-interaction-dependent assemblies that are critical for mitotic centrosome assembly. These studies provide the first atomic insight into a molecular interaction required for mitotic centrosome assembly.Z.F. and A.F.M.H. were supported by Sir William Dunn School EPA PhD studentships and also a Clarendon Scholarship and a Santander Graduate Award to A.F.M.H; A.C., A.W., M.A.C., P.T.C., and J.W.R. were supported by a Wellcome Trust Senior Investigator Award (104575); S.J. and S.M.L. were supported by a Wellcome Trust Senior Investigator Award (100298); A.W. was also partially supported by a Wellcome Trust Strategic Award to the Micron Oxford Advanced Bioimaging Unit (107457)

    Similar works