41 research outputs found

    Methods for evaluating the predictive accuracy of structural dynamic models

    Get PDF
    Uncertainty of frequency response using the fuzzy set method and on-orbit response prediction using laboratory test data to refine an analytical model are emphasized with respect to large space structures. Two aspects of the fuzzy set approach were investigated relative to its application to large structural dynamics problems: (1) minimizing the number of parameters involved in computing possible intervals; and (2) the treatment of extrema which may occur in the parameter space enclosed by all possible combinations of the important parameters of the model. Extensive printer graphics were added to the SSID code to help facilitate model verification, and an application of this code to the LaRC Ten Bay Truss is included in the appendix to illustrate this graphics capability

    A computer program for model verification of dynamic systems

    Get PDF
    Dynamic model verification is the process whereby an analytical model of a dynamic system is compared with experimental data, and then qualified for future use in predicting system response in a different dynamic environment. There are various ways to conduct model verification. The approach adopted in MOVER II employs Bayesian statistical parameter estimation. Unlike curve fitting whose objective is to minimize the difference between some analytical function and a given quantity of test data (or curve), Bayesian estimation attempts also to minimize the difference between the parameter values of that function (the model) and their initial estimates, in a least squares sense. The objectives of dynamic model verification, therefore, are to produce a model which: (1) is in agreement with test data, (2) will assist in the interpretation of test data, (3) can be used to help verify a design, (4) will reliably predict performance, and (5) in the case of space structures, facilitate dynamic control

    CD98 Increases Renal Epithelial Cell Proliferation by Activating MAPKs

    Get PDF
    CD98 heavy chain (CD98hc) is a multifunctional transmembrane spanning scaffolding protein whose extracellular domain binds with light chain amino acid transporters (Lats) to form the heterodimeric amino acid transporters (HATs). It also interacts with β1 and β3 integrins by its transmembrane and cytoplasmic domains. This interaction is proposed to be the mechanism whereby CD98 mediates cell survival and growth via currently undefined signaling pathways. In this study, we determined whether the critical function of CD98-dependent amino acid transport also plays a role in cell proliferation and defined the signaling pathways that mediate CD98-dependent proliferation of murine renal inner medullary collecting duct (IMCD) cells. We demonstrate that downregulating CD98hc expression resulted in IMCD cell death. Utilizing overexpression studies of CD98hc mutants that either lacked a cytoplasmic tail or were unable to bind to Lats we showed that CD98 increases serum-dependent cell proliferation by a mechanism that requires the CD98hc cytoplasmic tail. We further demonstrated that CD98-dependent amino acid transport increased renal tubular epithelial cell proliferation by a mechanism that does not require the CD98hc cytoplasmic tail. Both these mechanisms of increased renal tubular epithelial cell proliferation are mediated by Erk and p38 MAPK signaling. Although increased amino transport markedly activated mTor signaling, this pathway did not alter cell proliferation. Thus, these studies demonstrate that in IMCD cells, the cytoplasmic and extracellular domains of CD98hc regulate cell proliferation by distinct mechanisms that are mediated by common MAPK signaling pathways

    Interboard optical data distribution by Bessel beam shadowing

    No full text
    We describe the efficient conversion of light from a laser diode into a Bessel beam whose axial intensity varies almost uniformly with distance using only a holographic optical element. An interesting shadowing property of the Bessel beam is demonstrated where on blocking the intense central spot the propagating ring pattern acts to reform the central spot a short distance following the obstruction. This behaviour together with the long propagation range for the Bessel beam's central spot are considered for multiboard optical interconnects
    corecore