42 research outputs found

    Impact of intracellular ion channels on cancer development and progression

    Get PDF

    Future perspectives in melanoma research: meeting report from the "Melanoma Bridge", Napoli, December 5th-8th 2013

    Get PDF

    CXCR6 by increasing retention of memory CD8 + T cells in the ovarian tumor microenvironment promotes immunosurveillance and control of ovarian cancer

    No full text
    Purpose Resident memory CD8 T cells, owing to their ability to reside and persist in peripheral tissues, impart adaptive sentinel activity and amplify local immune response, and have beneficial implications for tumor surveillance and control. The current study aimed to clarify the less known chemotactic mechanisms that govern the localization, retention, and residency of memory CD8 T cells in the ovarian tumor microenvironment. Experimental design RNA and protein expressions of chemokine receptors in CD8 + resident memory T cells in human ovarian tumor-infiltrating CD8 + T cells and their association with survival were analyzed. The role of CXCR6 on antitumor T cells was investigated using prophylactic vaccine models in murine ovarian cancer. Results Chemokine receptor profiling of CD8 + CD103 + resident memory tumor-infiltrating lymphocytes in patients with ovarian cancer revealed high expression of CXCR6. Analysis of The Cancer Genome Atlas (TCGA) (ovarian cancer database revealed CXCR6 to be associated with CD103 and increased patient survival. Functional studies in mouse models of ovarian cancer revealed that CXCR6 is a marker of resident, but not circulatory, tumor-specific memory CD8 + T cells. CXCR6-deficient tumor-specific CD8 + T cells showed reduced retention in tumor tissues, leading to diminished resident memory responses and poor control of ovarian cancer. Conclusions CXCR6, by promoting retention in tumor tissues, serves a critical role in resident memory T cell-mediated immunosurveillance and control of ovarian cancer. Future studies warrant exploiting CXCR6 to promote resident memory responses in cancers. © Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY. Published by BMJ.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses

    No full text
    A key issue in advancing the use of adoptive cell transfer (ACT) of T cell receptor (TCR) engineered lymphocytes for cancer therapy is demonstrating how TCR transgenic cells repopulate lymphopenic hosts and target tumors in an antigen-specific fashion. ACT of splenocytes from fully immunocompetent HLA-A2.1/Kb mice transduced with a chimeric murine/human TCR specific for tyrosinase, together with lymphodepletion conditioning, dendritic cell (DC)-based vaccination, and high-dose interleukin-2 (IL-2), had profound antitumor activity against large established MHC- and antigen-matched tumors. Genetic labeling with bioluminescence imaging (BLI) and positron emitting tomography (PET) reporter genes allowed visualization of the distribution and antigen-specific tumor homing of TCR transgenic T cells, with trafficking correlated with antitumor efficacy. After an initial brief stage of systemic distribution, TCR-redirected and genetically labeled T cells demonstrated an early pattern of specific distribution to antigen-matched tumors and locoregional lymph nodes, followed by a more promiscuous distribution 1 wk later with additional accumulation in antigen-mismatched tumors. This approach of TCR engineering and molecular imaging reporter gene labeling is directly translatable to humans and provides useful information on how to clinically develop this mode of therapy
    corecore