69 research outputs found

    Spectral Properties of Magnetic Excitations in Cuprate Two-Leg Ladder Systems

    Full text link
    This article summarizes and extends the recent developments in the microscopic modeling of the magnetic excitations in cuprate two-leg ladder systems. The microscopic Hamiltonian comprises dominant Heisenberg exchange terms plus an additional four-spin interaction which is about five times smaller. We give an overview over the relevant energies like the one-triplon dispersion, the energies of two-triplon bound states and the positions of multi-triplon continua and over relevant spectral properties like spectral weights and spectral densities in the parameter regime appropriate for cuprate systems. It is concluded that an almost complete understanding of the magnetic excitations in undoped cuprate ladders has been obtained as measured by inelastic neutron scattering, inelastic light (Raman) scattering and infrared absorption.Comment: 26 pages, 10 figures, review for Mod. Phys. Lett.

    Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV2O5

    Full text link
    High-resolution X-ray diffraction data show that the low-temperature superstructure of alpha-NaV2O5 has an F-centered orthorhombic 2a x 2b x 4c superlattice. A structure model is proposed, that is characterized by layers with zigzag charge order on all ladders and stacking disorder, such that the averaged structure has space group Fmm2. This model is in accordance with both X-ray scattering and NMR data. Variations in the stacking order and disorder offer an explanation for the recently observed devils staircase of the superlattice period along c.Comment: REVTEX, 4 pages including 2 figures, shortened, submitted to PR

    Discussion of a spin-cluster model for the low temperature phase of NaV_2O_5

    Full text link
    We discuss magnetic excitations of a spin-cluster model which has been suggested to describe the low temperature phase of alpha'-NaV_2O_5. This model fulfills all symmetry criteria proposed by recent x-ray investigations. We find that this model is not able to describe the occurence of two well separated magnon lines perpendicular to the ladder direction as observed in INS experiments. We suggest further experimental analysis to generally distinguish between models with double reflection or inversion symmetry.Comment: 4 pages, 4 figures, added a calculation of level repulsio

    Magnetic properties of a spin-1/2 quadrumer chain

    Full text link
    We study a novel S=1/2 cluster chain Hamiltonian which has recently been proposed in the context of the charge ordered low-temperature phase of alpha'-NaV2O5. We perform a detailed investigation of this model within a large range of parameters using perturbation theory and Lanczos diagonalization. Using model-specific local conservation laws and parameter-dependent mappings to various effective low-energy Hamiltonians we uncover a rich phase diagram and several regimes of gapful spin-excitations. We find that the overall features of recent neutron scattering data on alpha'-NaV2O5 can be fitted within this model, however using a set of parameters which seems unlikely.Comment: 9 pages REVTeX, 11 PostScript figures included using psfig.sty; final version to appear in Phys. Rev. B: New appendix, modified Figs. 1 & 10 and other small change

    Dzyaloshinskii-Moriya interaction in NaV2_2O5_5: a microscopic study

    Full text link
    We present a unified account of magnetic exchange and Raman scattering in the quasi-one-dimensional transition-metal oxide NaV2_2O5_5. Based on a cluster-model approach explicit expressions for the exchange integral and the Raman-operator are given. It is demonstrated that a combination of the electronic-structure and the Dzyaloshinskii-Moriya interaction, allowed by symmetry in this material, are responsible for the finite Raman cross-section giving rise to both, one- and two-magnon scattering amplitudes.Comment: 7 pages, 1 figur

    Low-temperature structural model of hcp solid C70_{70}

    Full text link
    We report intermolecular potential-energy calculations for solid C_70{70} and determine the optimum static orientations of the molecules at low temperature; we find them to be consistent with the monoclinic structural model proposed by us in an earlier report [Solid State Commun. {\bf 105), 247 (1998)]. This model indicates that the C_5 axis of the molecule is tilted by an angle \approx18^o from the monoclinic b axis in contrast with the molecular orientation proposed by Verheijen {\it et al.} [J. Chem. Phys. {\bf 166}, 287 (1992)] where the C_5 axis is parallel to the monoclinic b axis. In this calculation we have incorporated the effective bond charge Coulomb potential together with the Lennard-Jones potential between the molecule at the origin of the monoclinic unit cell and its six nearest neighbours, three above and three below. The minimum energy configuration for the molecular orientations turns out to be at θ\theta=18^o, ϕ\phi=8^o, and ψ\psi=5^o, where θ\theta, ϕ\phi, and ψ\psi define the molecular orientations.Comment: ReVTeX (4 pages) + 2 PostScript figure

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital

    Can a frustrated spin-cluster model describe the low-temperature physics of NaV_2O_5 ?

    Full text link
    Recent experimental evidence suggest the existence of three distinct V-valence states (V^{+4}, V^{+4.5} and V^{+5}) in the low-temperature phase of NaV_2O_5 in apparent discrepancy with the observed spin-gap. We investigate a novel spin cluster model, consisting of weakly coupled, frustrated four-spin clusters aligned along the crystallographic b-axis that was recently proposed to reconcile these experimental observations. We have studied the phase diagram and the magnon dispersion relation of this model using DMRG, exact diagonalization and a novel cluster-operator theory. We find a spin-gap for all parameter values and two distinct phases, a cluster phase and a Haldane phase. We evaluate the size of the gap and the magnon dispersion and find no parameter regime which would reproduce the experimental results. We conclude that this model is inappropriate for the low-temperature regime of NaV_2O_5

    Phase diagram of the quarter-filled extended Hubbard model on a two-leg ladder

    Full text link
    We investigate the ground-state phase diagram of the quarter-filled Hubbard ladder with nearest-neighbor Coulomb repulsion V using the Density Matrix Renormalization Group technique. The ground-state is homogeneous at small V, a ``checkerboard'' charge--ordered insulator at large V and not too small on-site Coulomb repulsion U, and is phase-separated for moderate or large V and small U. The zero-temperature transition between the homogeneous and the charge-ordered phase is found to be second order. In both the homogeneous and the charge-ordered phases the existence of a spin gap mainly depends on the ratio of interchain to intrachain hopping. In the second part of the paper, we construct an effective Hamiltonian for the spin degrees of freedom in the strong-coupling charge-ordered regime which maps the system onto a frustrated spin chain. The opening of a spin gap is thus connected with spontaneous dimerization.Comment: 12 pages, 13 figures, submitted to PRB, presentation revised, new results added (metallic phase at small U and V

    Hole crystallization in the spin ladder of Sr14Cu24O41

    Full text link
    One of the deepest questions in condensed matter physics concerns what other phases compete with superconductivity in high-transition-temperature (high-Tc) superconductors. One candidate is the "stripe" phase, in which the carriers (holes) condense into rivers of charge separating regions of antiferromagnetism. A related but lesser known system is the "spin ladder", which consists of two coupled chains of magnetic ions forming an array of rungs. A doped ladder can be thought of as a high-Tc material with lower dimensionality, and has been predicted to exhibit both superconductivity and an insulating "hole crystal" phase in which the carriers are localised through many-body interactions. The competition between the two resembles that between static stripes and superconductivity in high-Tc materials. Here we report evidence, from resonant x-ray scattering, for the existence of a hole crystal in the doped spin ladder of Sr14Cu24O41. This phase exists without a detectable distortion in the structural lattice, indicating it arises from many-body effects. Our measurements confirm theoretical predictions and support the picture that proximity to charge ordered states is a general property of superconductivity in copper-oxides.Comment: 10 pages, 4 figure
    corecore