16 research outputs found

    Treatment efficacy in a soman-poisoned guinea pig model: added value of physostigmine?

    Get PDF
    Current treatment of organophosphate poisoning is insufficient, and survivors may suffer from long-lasting adverse effects, such as cognitive deficits and sleep-wake disturbances. In the present study, we aimed at developing a guinea pig model to investigate the benefits of immediate and delayed stand-alone therapy on the development of clinical signs, EEG, heart rate, respiration and AChE activity in blood and brain after soman poisoning. The model allowed the determination of the therapeutic effects at the short-term of obidoxime, atropine and physostigmine. Obidoxime exerted the highest therapeutic efficacy at administration of the lowest dose (3.1 mg/kg i.m.), whereas two higher doses (9 and 18 mg/kg) were less effective on most parameters. Addition of atropine at 0.03 and 3 mg/kg (i.m.) to the treatment did not improve the therapeutic effects of obidoxime alone. Physostigmine (0.8 mg/kg im) at 1 min after poisoning increased mortality. Two lower doses (0.1 and 0.3 mg/kg i.m.) showed improvements on all parameters but respiration. The middle dose was most effective in preventing seizure development and therefore assessed as the most efficacious dose. Combined treatment of obidoxime and physostigmine shortened the duration of seizures, if present, from up to 80 min to ~10–15 min. In practice, treatment will be employed when toxic signs appear, with the presence of high levels of AChE inhibition in both blood and brain. Administration of physostigmine at that moment showed to be redundant or even harmful. Therefore, treatment of OP poisoning with a carbamate, such as physostigmine, should be carefully re-evaluated

    Long-Term Survival of Human Neural Stem Cells in the Ischemic Rat Brain upon Transient Immunosuppression

    Get PDF
    Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and β-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders

    Discovery of [11C]MK-6884: a positron emission tomography (PET) imaging agent for the study of M4 muscarinic receptor positive allosteric modulators (PAMs) in neurodegenerative diseases

    Get PDF
    The measurement of receptor occupancy (RO) using positron emission tomography (PET) has been instrumental in guiding discovery and development of CNS directed therapeutics. We and others have investigated muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs) for the treatment of symptoms associated with neuropsychiatric disorders. In this article, we describe the synthesis, in vitro, and in vivo characterization of a series of central pyridine-related M4 PAMs that can be conveniently radiolabeled with carbon-11 as PET tracers for the in vivo imaging of an allosteric binding site of the M4 receptor. We first demonstrated its feasibility by mapping the receptor distribution in mouse brain and confirming that a lead molecule 1 binds selectively to the receptor only in the presence of the orthosteric agonist carbachol. Through a competitive binding affinity assay and a number of physiochemical properties filters, several related compounds were identified as candidates for in vivo evaluation. These candidates were then radiolabeled with 11C and studied in vivo in rhesus monkeys. This research eventually led to the discovery of the clinical radiotracer candidate [11C]MK-6884
    corecore