181 research outputs found

    Dissemination of antibiotic resistance genes associated with the sporobiota in sediments impacted by wastewater.

    Get PDF
    Aquatic ecosystems serve as a dissemination pathway and a reservoir of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this study, we investigate the role of the bacterial sporobiota to act as a vector for ARG dispersal in aquatic ecosystems. The sporobiota was operationally defined as the resilient fraction of the bacterial community withstanding a harsh extraction treatment eliminating the easily lysed fraction of the total bacterial community. The sporobiota has been identified as a critical component of the human microbiome, and therefore potentially a key element in the dissemination of ARG in human-impacted environments. A region of Lake Geneva in which the accumulation of ARG in the sediments has been previously linked to the deposition of treated wastewater was selected to investigate the dissemination of <i>tet</i> (W) and <i>sul</i> 1, two genes conferring resistance to tetracycline and sulfonamide, respectively. Analysis of the abundance of these ARG within the sporobiome (collection of genes of the sporobiota) and correlation with community composition and environmental parameters demonstrated that ARG can spread across the environment with the sporobiota being the dispersal vector. A highly abundant OTU affiliated with the genus <i>Clostridium</i> was identified as a potential specific vector for the dissemination of <i>tet</i> (W), due to a strong correlation with <i>tet</i> (W) frequency (ARG copy numbers/ng DNA). The high dispersal rate, long-term survival, and potential reactivation of the sporobiota constitute a serious concern in terms of dissemination and persistence of ARG in the environment

    An inverse for the Jaumann derivative and some applications to the rheology of viscoelastic fluids

    Full text link
    By using a generalization of the matrizant of matrix calculus, it is shown how one can construct formally an inverse, or integral, for the well-known Jaumann derivative of continuum mechanics. Some applications to fluid rheology are then considered. First, it is shown that this integral provides, via the Boltzmann super-position principle, a generalization of Oldroyd's quasi-linear fluid model, which is related to the molecular model of Bueche . Explicit expressions for the stresses arising in a general laminar shear flow are then derived for this model. Secondly, it is indicated how the operation can be used with rheological equations which are nonlinear in the deformation-rate, but quasi-linear in stress, to solve explicitly for the stress in terms of kinematic quantities. As an example, a rheological equation for suspensions of viscoelastic spheres in a Newton ian fluid is treated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47218/1/397_2005_Article_BF01982423.pd

    Kidney Pathology Precedes and Predicts the Pathological Cascade of Cerebrovascular Lesions in Stroke Prone Rats

    Get PDF
    INTRODUCTION: Human cerebral small vessel disease (CSVD) has been hypothesized to be an age-dependent disease accompanied by similar vascular changes in other organs. SHRSP feature numerous vascular risk factors and may be a valid model of some aspects of human CSVD. Here we compare renal histopathological changes with the brain pathology of spontaneously hypertensive stroke-prone rats (SHRSP). MATERIAL AND METHODS: We histologically investigated the brains and kidneys of 61 SHRSP at different stages of age (12 to 44 weeks). The brain pathology (aggregated erythrocytes in capillaries and arterioles, microbleeds, microthromboses) and the kidney pathology (aggregated erythrocytes within peritubular capillaries, tubular protein cylinders, glomerulosclerosis) were quantified separately. The prediction of the brain pathology by the kidney pathology was assessed by creating ROC-curves integrating the degree of kidney pathology and age of SHRSP. RESULTS: Both, brain and kidney pathology, show an age-dependency and proceed in definite stages whereas an aggregation of erythrocytes in capillaries and arterioles, we parsimoniously interpreted as stases, represent the initial finding in both organs. Thus, early renal tubulointerstitial damage characterized by rather few intravasal erythrocyte aggregations and tubular protein cylinders predicts the initial step of SHRSPs' cerebral vascular pathology marked by accumulated erythrocytes. The combined increase of intravasal erythrocyte aggregations and protein cylinders accompanied by glomerulosclerosis and thrombotic renal microangiopathy in kidneys of older SHRSP predicts the final stages of SHRSPs' cerebrovascular lesions marked by microbleeds and thrombotic infarcts. CONCLUSION: Our results illustrate a close association between structural brain and kidney pathology and support the concept of small vessel disease to be an age-dependent systemic pathology. Further, an improved joined nephrologic and neurologic diagnostic may help to identify patients with CSVD at an early stage

    Simultaneous free-volume modeling of the self-diffusion coefficient and dynamic viscosity at high pressure

    Get PDF
    International audienceA free-volume model of the dynamic viscosity and the self-diffusion coefficients was discussed. The temperature-pressure variations of the dynamic viscosity and the self-diffusion coefficients of small molecules were predicted. The compounds, carbon tetrachloride, cyclohexane, benzene, chlorotrifluoromethane, tetramethylsilane and methylcyclohexane were used for the investigation. The relation between microstructure, free volume and different complex thermophysical properties were emphasized by the model

    Sucrose in the concentrated solution or the supercooled “state” : a review of caramelisation reactions and physical behaviour

    Get PDF
    Sucrose is probably one of the most studied molecules by food scientists, since it plays an important role as an ingredient or preserving agent in many formulations and technological processes. When sucrose is present in a product with a concentration near or greater than the saturation point—i.e. in the supercooled state—it possesses high potentialities for the food industry in areas as different as pastry industry, dairy and frozen desserts or films and coatings production. This paper presents a review on critical issues and research on highly concentrated sucrose solutions—mainly, on sucrose thermal degradation and relaxation behaviour in such solutions. The reviewed works allow identifying several issues with great potential for contributing to significant advances in Food Science and Technology.Authors are grateful for the valuable discussions with Teresa S. Brandao and Rosiane Lopes da Cunha during this research. Author M. A. C. Quintas acknowledges the financial support of her research by FCT grant SFRH/BPD/41715/2007
    corecore