38 research outputs found

    Cortical correlates of psychedelic-induced shaking behavior revealed by voltage imaging

    Get PDF
    (1) From mouse to man, shaking behavior (head twitches and/or wet dog shakes) is a reliable readout of psychedelic drug action. Shaking behavior like psychedelia is thought to be mediated by serotonin 2A receptors on cortical pyramidal cells. The involvement of pyramidal cells in psychedelic-induced shaking behavior remains hypothetical, though, as experimental in vivo evidence is limited. (2) Here, we use cell type-specific voltage imaging in awake mice to address this issue. We intersectionally express the genetically encoded voltage indicator VSFP Butterfly 1.2 in layer 2/3 pyramidal neurons. We simultaneously capture cortical hemodynamics and cell type-specific voltage activity while mice display psychedelic shaking behavior. (3) Shaking behavior is preceded by high-frequency oscillations and overlaps with low-frequency oscillations in the motor cortex. Oscillations spectrally mirror the rhythmics of shaking behavior and reflect layer 2/3 pyramidal cell activity complemented by hemodynamics. (4) Our results reveal a clear cortical fingerprint of serotonin-2A-receptor-mediated shaking behavior and open a promising methodological avenue relating a cross-mammalian psychedelic effect to cell-type specific brain dynamics

    Positive expectations predict improved mental-health outcomes linked to psychedelic microdosing

    Get PDF
    Psychedelic microdosing describes the ingestion of near-threshold perceptible doses of classic psychedelic substances. Anecdotal reports and observational studies suggest that microdosing may promote positive mood and well-being, but recent placebo-controlled studies failed to fnd compelling evidence for this. The present study collected web-based mental health and related data using a prospective (before, during and after) design. Individuals planning a weekly microdosing regimen completed surveys at strategic timepoints, spanning a core four-week test period. Eightyone participants completed the primary study endpoint. Results revealed increased self-reported psychological well-being, emotional stability and reductions in state anxiety and depressive symptoms at the four-week primary endpoint, plus increases in psychological resilience, social connectedness, agreeableness, nature relatedness and aspects of psychological fexibility. However, positive expectancy scores at baseline predicted subsequent improvements in well-being, suggestive of a signifcant placebo response. This study highlights a role for positive expectancy in predicting positive outcomes following psychedelic microdosing and cautions against zealous inferences on its putative therapeutic value

    Body mass index (BMI) does not predict responses to psilocybin

    Get PDF
    Background: Psilocybin is a serotonin type 2A (5-HT2A) receptor agonist and naturally occurring psychedelic. 5-HT2A receptor density is known to be associated with body mass index (BMI), however, the impact of this on psilocybin therapy has not been explored. While body weight-adjusted dosing is widely used, this imposes a practical and financial strain on the scalability of psychedelic therapy. This gap between evidence and practice is caused by the absence of studies clarifying the relationship between BMI, the acute psychedelic experience and long-term psychological outcomes. Method: Data were pooled across three studies using a fixed 25 mg dose of psilocybin delivered in a therapeutic context to assess whether BMI predicts characteristics of the acute experience and changes in well-being 2 weeks later. Supplementing frequentist analysis with Bayes Factors has enabled for conclusions to be drawn regarding the null hypothesis. Results: Results support the null hypothesis that BMI does not predict overall intensity of the altered state, mystical experiences, perceptual changes or emotional breakthroughs during the acute experience. There was weak evidence for greater ‘dread of ego dissolution’ in participants with lower BMI, however, further analysis suggested BMI did not meaningfully add to the combination of the other covariates (age, sex and study). While mystical-type experiences and emotional breakthroughs were strong predictors of improvements in well-being, BMI was not. Conclusions: These findings have important implications for our understanding of pharmacological and extra-pharmacological contributors to psychedelic-assisted therapy and for the standardization of a fixed therapeutic dose in psychedelic-assisted therapy

    Tolerance and Tachyphylaxis to Head Twitches Induced by the 5-HT2A Agonist 25CN-NBOH in Mice

    No full text
    The serotonin (5-HT) 2A receptor is the primary molecular target of serotonergic hallucinogens, which trigger large-scale perturbations of the cortex. Our understanding of how 5-HT2A activation may cause the effects of hallucinogens has been hampered by the receptor unselectivity of most of the drugs of this class. Here we used 25CN-NBOH (N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine), a newly developed selective 5-HT2A agonist, and tested it with regard to the head-twitch-response (HTR) model of 5-HT2A activity and effects on locomotion. 25CN-NBOH evoked HTRs with an inverted u-shape-like dose-response curve and highest efficacy at 1.5 mg/kg, i.p. HTR occurrence peaked within 5 min after agonist injection, and exponentially decreased to half-maximal frequency at ~11 min. Thorough habituation to the experimental procedures (including handling, saline injection, and exposure to the observational boxes 1 day before the experiment) facilitated the animals' response to 25CN-NBOH. 25CN-NBOH (1.5 mg/kg, i.p.) induced HTRs were blocked by the 5-HT2A antagonist ketanserin (0.75 mg/kg, 30 min pre), but not by the 5-HT2C antagonist SB-242084 (0.5 mg/kg, i.p., 30 min pre). SB-242084 instead slightly increased the number of HTRs occurring at a 3.0-mg/kg dose of the agonist. Apart from HTR induction, 25CN-NBOH also modestly increased locomotor activity of the mice. Repeated once-per-day injections (1.5 mg/kg, i.p.) led to reduced occurrence of 25CN-NBOH induced HTRs. This intermediate tolerance was augmented when a second (higher) dose of the drug (3.0 mg/kg) was interspersed. Short-interval tolerance (i.e., tachyphylaxis) was observed when the drug was injected twice at intervals of 1.0 and 1.5 h at either dose tested (1.5 mg/kg and 0.75 mg/kg, respectively). Inducing ketanserin-sensitive HTRs, which are dependent on environmental valences and which show signs of tachyphylaxis and tolerance, 25CN-NBOH shares striking features common to serotonergic hallucinogens. Given its distinct in vitro selectivity for 5-HT2A over non5-HT2 receptors and its behavioral dynamics, 25CN-NBOH appears to be a powerful tool for dissection of receptor-specific cortical circuit dynamics, including 5-HT2A related psychoactivity

    The 5-HT2AR agonist 25CN-NBOH increases murine heart rate and neck-arterial blood flow in a temperature-dependent manner

    No full text
    Background: Serotonin 2A receptors (5-HT2ARs), the molecular target of psychedelics, are expressed by neuronal and vascular cells, both of which might contribute to the brain haemodynamics characteristic for the psychedelic state. Aim: Aiming for a systemic understanding of psychedelic vasoactivity, we here investigated the effect of 25CN-NBOH (N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine) —a new-generation agonist with superior 5-HT2AR selectivity— on brain-supplying neck-arterial blood flow. Methods: We recorded body core temperature and employed non-invasive, collar-sensor based pulse oximetry in anesthetised mice to extract parameters of local blood perfusion, oxygen saturation, heart and respiration rate. Hypothesising an overlap between serotonergic pulse- and thermoregulation, recordings were done under physiological and elevated pad temperature. Results: 25CN-NBOH (1.5 mg/kg, s.c.) significantly increased the frequency of heart beats accompanied by a slight elevation of neck-arterial blood flow. Increasing the animal-supporting heat-pad temperature from 37 to 41 ̊C enhanced the drug’s effect on blood flow while counteracting tachycardia. Additionally, 25CN-NBOH promoted bradypnea, which like tachycardia quickly reversed at elevated pad temperature. The interrelatedness of 25CN-NBOH’s respiro-cardiovascular effects to thermoregulation was further corroborated by the drug selectively increasing body core temperature at elevated pad temperature. Arterial oxygen saturation at neither temperature was affected by 25CN-NBOH. Conclusions: Our findings imply that selective 5-HT2AR activation modulates systemic cardiovascular functioning in orchestration with thermoregulation, and with immediate relevance to brain-imminent neck (most likely carotid) arteries. As carotid branching is a critical last hub to channel cardiovascular output to or away from the brain, our results might have implications for the brain haemodynamics associated with psychedelia

    The serotonin 2A receptor agonist 25CN-NBOH increases murine heart rate and neck-arterial blood flow in a temperature-dependent manner.

    No full text
    BACKGROUND: Serotonin 2A receptors, the molecular target of psychedelics, are expressed by neuronal and vascular cells, both of which might contribute to brain haemodynamic characteristics for the psychedelic state. AIM: Aiming for a systemic understanding of psychedelic vasoactivity, here we investigated the effect of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine - a new-generation agonist with superior serotonin 2A receptor selectivity - on brain-supplying neck-arterial blood flow. METHODS: We recorded core body temperature and employed non-invasive, collar-sensor based pulse oximetry in anesthetised mice to extract parameters of local blood perfusion, oxygen saturation, heart and respiration rate. Hypothesising an overlap between serotonergic pulse- and thermoregulation, recordings were done under physiological and elevated pad temperatures. RESULTS: N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine (1.5 mg/kg, subcutaneous) significantly increased the frequency of heart beats accompanied by a slight elevation of neck-arterial blood flow. Increasing the animal-supporting heat-pad temperature from 37°C to 41°C enhanced the drug's effect on blood flow while counteracting tachycardia. Additionally, N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine promoted bradypnea, which, like tachycardia, quickly reversed at the elevated pad temperature. The interrelatedness of N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine's respiro-cardiovascular effects and thermoregulation was further corroborated by the drug selectively increasing the core body temperature at the elevated pad temperature. Arterial oxygen saturation was not affected by N-(2-hydroxybenzyl)-2,5-dimethoxy-4-cyanophenylethylamine at either temperature. CONCLUSIONS: Our findings imply that selective serotonin 2A receptor activation modulates systemic cardiovascular functioning in orchestration with thermoregulation and with immediate relevance to brain-imminent neck (most likely carotid) arteries. As carotid branching is a critical last hub to channel cardiovascular output to or away from the brain, our results might have implications for the brain haemodynamics associated with psychedelia

    Buchbesprechungen

    No full text
    corecore