1,966 research outputs found

    Levy Flights in Inhomogeneous Media

    Full text link
    We investigate the impact of external periodic potentials on superdiffusive random walks known as Levy flights and show that even strongly superdiffusive transport is substantially affected by the external field. Unlike ordinary random walks, Levy flights are surprisingly sensitive to the shape of the potential while their asymptotic behavior ceases to depend on the Levy index μ\mu . Our analysis is based on a novel generalization of the Fokker-Planck equation suitable for systems in thermal equilibrium. Thus, the results presented are applicable to the large class of situations in which superdiffusion is caused by topological complexity, such as diffusion on folded polymers and scale-free networks.Comment: 4 pages, 4 figure

    Particle Dispersion on Rapidly Folding Random Hetero-Polymers

    Full text link
    We investigate the dynamics of a particle moving randomly along a disordered hetero-polymer subjected to rapid conformational changes which induce superdiffusive motion in chemical coordinates. We study the antagonistic interplay between the enhanced diffusion and the quenched disorder. The dispersion speed exhibits universal behavior independent of the folding statistics. On the other hand it is strongly affected by the structure of the disordered potential. The results may serve as a reference point for a number of translocation phenomena observed in biological cells, such as protein dynamics on DNA strands.Comment: 4 pages, 4 figure

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Relativistic Ring-Diagram Nuclear Matter Calculations

    Full text link
    A relativistic extension of the particle-particle hole-hole ring-diagram many-body formalism is developed by using the Dirac equation for single-particle motion in the medium. Applying this new formalism, calculations are performed for nuclear matter. The results show that the saturation density is improved and the equation of state becomes softer as compared to corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A potential, nuclear matter is predicted to saturate at an energy per nucleon of --15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm1^{-1}, in excellent agreement with empirical information. The compression modulus is 152 MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-92-0

    Relativistic heavy ion collisions with realistic non-equilibrium mean fields

    Get PDF
    We study the influence of non-equilibrium phase space effects on the dynamics of heavy ion reactions within the relativistic BUU approach. We use realistic Dirac-Brueckner-Hartree-Fock (DBHF) mean fields determined for two-Fermi-ellipsoid configurations, i.e. for colliding nuclear matter, in a local phase space configuration approximation (LCA). We compare to DBHF mean fields in the local density approximation (LDA) and to the non-linear Walecka model. The results are further compared to flow data of the reaction AuAu on AuAu at 400 MeV per nucleon measured by the FOPI collaboration. We find that the DBHF fields reproduce the experiment if the configuration dependence is taken into account. This has also implications on the determination of the equation of state from heavy ion collisions.Comment: Physics Letters B in press; 10 pages, Postscript file replaced by Latex file and 3 Postscript figure

    The role of caretakers in disease dynamics

    Full text link
    One of the key challenges in modeling the dynamics of contagion phenomena is to understand how the structure of social interactions shapes the time course of a disease. Complex network theory has provided significant advances in this context. However, awareness of an epidemic in a population typically yields behavioral changes that correspond to changes in the network structure on which the disease evolves. This feedback mechanism has not been investigated in depth. For example, one would intuitively expect susceptible individuals to avoid other infecteds. However, doctors treating patients or parents tending sick children may also increase the amount of contact made with an infecteds, in an effort to speed up recovery but also exposing themselves to higher risks of infection. We study the role of these caretaker links in an adaptive network models where individuals react to a disease by increasing or decreasing the amount of contact they make with infected individuals. We find that pure avoidance, with only few caretaker links, is the best strategy for curtailing an SIS disease in networks that possess a large topological variability. In more homogeneous networks, disease prevalence is decreased for low concentrations of caretakers whereas a high prevalence emerges if caretaker concentration passes a well defined critical value.Comment: 8 pages, 9 figure

    Momentum-Dependent Mean Field Based Upon the Dirac-Brueckner Approach for Nuclear Matter

    Full text link
    A momentum-dependent mean field potential, suitable for application in the transport-model description of nucleus-nucleus collisions, is derived in a microscopic way. The derivation is based upon the Bonn meson-exchange model for the nucleon-nucleon interaction and the Dirac-Brueckner approach for nuclear matter. The properties of the microscopic mean field are examined and compared with phenomenological parametrizations which are commonly used in transport-model calculations.Comment: 15 pages text (RevTex) and 4 figures (postscript in a separate uuencoded file), UI-NTH-930

    Оценка средней скорости на 10-и метровой глубине для разрезов с высокоскоростным верхним слоем при микрорайонировании

    Get PDF
    Описываются способы оценки средней скорости поперечной волны на 10-и метровой глубине для разрезов, верхняя часть которых представлена уплотненным насыпным грунтом или мерзлыми породами

    Equation of state for nuclear matter based on density dependent effective interaction

    Full text link
    An interesting method of obtaining equation of state for nuclear matter, from a density dependent M3Y interaction, by minimizing the energy per nucleon is described. The density dependence parameters of the interaction are obtained by reproducing the saturation energy per nucleon and the saturation density of spin and isospin symmetric cold infinite nuclear matter. The nuclear matter equation of state thus obtained is then used to calculate the pressure, the energy density, the nuclear incompressibility and the velocity of sound in nuclear medium. The results obtained are in good agreement with experimental data and provide a unified description of radioactivity, scattering and nuclear matter.Comment: 10 pages including 2 figure

    Quark condensate in nuclear matter based on Nuclear Schwinger-Dyson formalism

    Full text link
    The effects of higher order corrections of ring diagrams for the quark condensate are studied by using the bare vertex Nuclear Schwinger Dyson formalism based on σ\sigma-ω\omega model. At the high density the quark condensate is reduced by the higher order contribution of ring diagrams more than the mean field theory or the Hartree-Fock
    corecore