83 research outputs found

    A methylotroph to produce L-malic acid in a techno-economically feasible way

    No full text
    Bastem GM, Sayar NA, Kosec G, Wendisch VF, Brautaset T, Akbulut BS. A methylotroph to produce L-malic acid in a techno-economically feasible way. In: Supplement: The Biochemistry Global Summit, 25th IUBMB Congress, 46th FEBS Congress, 15th PABMB Congress, July 9–14, 2022, Lisbon, Portugal. FEBS Open Bio . Vol 12. Hoboken: Wiley; 2022: 305

    Analysis and Manipulation of Aspartate Pathway Genes for l-Lysine Overproduction from Methanol by Bacillus methanolicus▿

    No full text
    We investigated the regulation and roles of six aspartate pathway genes in l-lysine overproduction in Bacillus methanolicus: dapG, encoding aspartokinase I (AKI); lysC, encoding AKII; yclM, encoding AKIII; asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; and lysA, encoding meso-diaminopimelate decarboxylase. Analysis of the wild-type strain revealed that in vivo lysC transcription was repressed 5-fold by l-lysine and induced 2-fold by dl-methionine added to the growth medium. Surprisingly, yclM transcription was repressed 5-fold by dl-methionine, while the dapG, asd, dapA, and lysA genes were not significantly repressed by any of the aspartate pathway amino acids. We show that the l-lysine-overproducing classical B. methanolicus mutant NOA2#13A52-8A66 has—in addition to a hom-1 mutation—chromosomal mutations in the dapG coding region and in the lysA promoter region. No mutations were found in its dapA, lysC, asd, and yclM genes. The mutant dapG gene product had abolished feedback inhibition by meso-diaminopimelate in vitro, and the lysA mutation was accompanied by an elevated (6-fold) lysA transcription level in vivo. Moreover, yclM transcription was increased 16-fold in mutant strain NOA2#13A52-8A66 compared to the wild-type strain. Overexpression of wild-type and mutant aspartate pathway genes demonstrated that all six genes are important for l-lysine overproduction as tested in shake flasks, and the effects were dependent on the genetic background tested. Coupled overexpression of up to three genes resulted in additive (above 80-fold) increased l-lysine production levels

    The Presence of N-Terminal Secretion Signal Sequences Leads to Strong Stimulation of the Total Expression Levels of Three Tested Medically Important Proteins during High-Cell-Density Cultivations of Escherichia coli

    No full text
    Genetic optimizations to achieve high-level production of three different proteins of medical importance for humans, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon alpha 2b (IFN-α2b), and single-chain antibody variable fragment (scFv-phOx), were investigated during high-cell-density cultivations of Escherichia coli. All three proteins were poorly expressed when put under control of the strong Pm/xylS promoter/regulator system, but high volumetric yields of GM-CSF and scFv-phOx (up to 1.7 and 2.3 g/liter, respectively) were achieved when the respective genes were fused to a translocation signal sequence. The choice of signal sequence, pelB, ompA, or synthetic signal sequence CSP, displayed a high and specific impact on the total expression levels for these two proteins. Data obtained by quantitative PCR confirmed relatively high in vivo transcript levels without using a fused signal sequence, suggesting that the signal sequences mainly stimulate translation. IFN-α2b expression remained poor even when fused to a signal sequence, and an alternative IFN-α2b coding sequence that was optimized for effective expression in Escherichia coli was therefore synthesized. The total expression level of this optimized gene remained low, while high-level production (0.6 g/liter) was achieved when the gene was fused to a signal sequence. Together, our results demonstrate a critical role of signal sequences for achieving industrial level expression of three human proteins in E. coli under the conditions tested, and this effect has to our knowledge not previously been systematically investigated
    • 

    corecore