358 research outputs found

    Spatial distribution and galactic model parameters of cataclysmic variables

    Full text link
    The spatial distribution, galactic model parameters and luminosity function of cataclysmic variables (CVs) in the solar neighbourhood have been determined from a carefully established sample of 459 CVs. The sample contains all of the CVs with distances computed from the Period-Luminosity-Colours (PLCs) relation of CVs which has been recently derived and calibrated with {\em 2MASS} photometric data. It has been found that an exponential function fits best to the observational z-distributions of all of the CVs in the sample, non-magnetic CVs and dwarf novae, while the sech^{2} function is more appropriate for nova-like stars and polars. The vertical scaleheight of CVs is 158±\pm14 pc for the {\em 2MASS} J-band limiting apparent magnitude of 15.8. On the other hand, the vertical scaleheights are 128±\pm20 and 160±\pm5 pc for dwarf novae and nova-like stars, respectively. The local space density of CVs is found to be ∼3×10−5\sim3\times10^{-5} pc^{-3} which is in agreement with the lower limit of the theoretical predictions. The luminosity function of CVs shows an increasing trend toward higher space densities at low luminosities, implying that the number of short-period systems should be high. The discrepancies between the theoretical and observational population studies of CVs will almost disappear if for the z-dependence of the space density the sech^{2} density function is used.Comment: 29 pages, 9 figures and 5 tables, accepted for publication in New Astronom

    Metallicity Calibration and Photometric Parallax Estimation: I. UBV photometry

    Full text link
    We present metallicity and photometric parallax calibrations for the F and G type dwarfs with photometric, astrometric and spectroscopic data. The sample consists of 168 dwarf stars covering the colour, iron abundance and absolute magnitude intervals 0.30<(B−V)0<0.680.30<(B-V)_0<0.68 mag, −2.0<[Fe/H]<0.4-2.0<[Fe/H]<0.4 dex and 3.4<MV<6.03.4<M_V<6.0 mag, respectively. The means and standard deviations of the metallicity and absolute magnitude residuals are small, i.e. ⟨Δ[Fe/H]res⟩=0\langle\Delta[Fe/H]_{res}\rangle=0 and σ=0.134\sigma=0.134 dex, and ⟨Δ(MV)res⟩=0\langle\Delta (M_V)_{res}\rangle=0 and σ=0.174\sigma=0.174 mag, respectively, which indicate accurate metallicity and photometric parallax estimations.Comment: 13 pages, 11 figures and 2 tables, accepted for publication in Astrophysics and Space Scienc
    • …
    corecore