1,392 research outputs found
Neutralize the neutrophils! Neutrophil β1 /β2 integrin activation contributes to JAK2-V617F–driven thrombosis
Critical behavior of the isotope yield distributions in the Multifragmentation Regime of Heavy Ion Reactions
Isotope yields have been analyzed within the framework of a Modified Fisher
Model to study the power law yield distribution of isotopes in the
multifragmentation regime. Using the ratio of the mass dependent symmetry
energy coefficient relative to the temperature, , extracted in
previous work and that of the pairing term, , extracted from this
work, and assuming that both reflect secondary decay processes, the
experimentally observed isotope yields have been corrected for these effects.
For a given I = N - Z value, the corrected yields of isotopes relative to the
yield of show a power law distribution, , in the mass range of and the distributions are
almost identical for the different reactions studied. The observed power law
distributions change systematically when I of the isotopes changes and the
extracted value decreases from 3.9 to 1.0 as I increases from -1 to 3.
These observations are well reproduced by a simple de-excitation model, which
the power law distribution of the primary isotopes is determined to
, suggesting that the disassembling system at the
time of the fragment formation is indeed at or very near the critical point.Comment: 5 pages, 5 figure
The Isospin Dependence Of The Nuclear Equation Of State Near The Critical Point
We discuss experimental evidence for a nuclear phase transition driven by the
different concentration of neutrons to protons. Different ratios of the neutron
to proton concentrations lead to different critical points for the phase
transition. This is analogous to the phase transitions occurring in 4He-3He
liquid mixtures. We present experimental results which reveal the N/A (or Z/A)
dependence of the phase transition and discuss possible implications of these
observations in terms of the Landau Free Energy description of critical
phenomena.Comment: 14 pages, 18 figure
A novel approach to Isoscaling: the role of the order parameter m = (N-Z)/A
Isoscaling is derived within a recently proposed modified Fisher model where
the free energy near the critical point is described by the Landau O(m^6)
theory. In this model m = (N-Z)/A is the order parameter, a consequence of (one
of) the symmetries of the nuclear Hamiltonian. Within this framework we show
that isoscaling depends mainly on this order parameter through the 'external
(conjugate) field' H. The external field is just given by the difference in
chemical potentials of the neutrons and protons of the two sources. To
distinguish from previously employed isoscaling relationships, this approach is
dubbed: m - scaling. We discuss the relationship between this framework and the
standard isoscaling formalism and point out some substantial differences in
interpretation of experimental results which might result. These should be
investigated further both theoretically and experimentally.Comment: 14 pages, 5 figure
Isobaric Yield Ratios and The Symmetry Energy In Fermi Energy Heavy Ion Reactions
The relative isobaric yields of fragments produced in a series of heavy ion
induced multifragmentation reactions have been analyzed in the framework of a
Modified Fisher Model, primarily to determine the ratio of the symmetry energy
coefficient to the temperature, , as a function of fragment mass A. The
extracted values increase from 5 to ~16 as A increases from 9 to 37. These
values have been compared to the results of calculations using the
Antisymmetrized Molecular Dynamics (AMD) model together with the statistical
decay code Gemini. The calculated ratios are in good agreement with those
extracted from the experiment. In contrast, the ratios determined from fitting
the primary fragment distributions from the AMD model calculation are ~ 4 and
show little variation with A. This observation indicates that the value of the
symmetry energy coefficient derived from final fragment observables may be
significantly different than the actual value at the time of fragment
formation. The experimentally observed pairing effect is also studied within
the same simulations. The Coulomb coefficient is also discussed.Comment: 10 pages, 12 figure
Experimental reconstruction of primary hot isotopes and characteristic properties of the fragmenting source in the heavy ion reactions near the Fermi energy
The characteristic properties of the hot nuclear matter existing at the time
of fragment formation in the multifragmentation events produced in the reaction
Zn + Sn at 40 MeV/nucleon are studied. A kinematical focusing
method is employed to determine the multiplicities of evaporated light
particles, associated with isotopically identified detected fragments. From
these data the primary isotopic yield distributions are reconstructed using a
Monte Carlo method. The reconstructed yield distributions are in good agreement
with the primary isotope distributions obtained from AMD transport model
simulations. Utilizing the reconstructed yields, power distribution, Landau
free energy, characteristic properties of the emitting source are examined. The
primary mass distributions exhibit a power law distribution with the critical
exponent, , for isotopes, but significantly deviates from
that for the lighter isotopes. Landau free energy plots show no strong
signature of the first order phase transition. Based on the Modified Fisher
Model, the ratios of the Coulomb and symmetry energy coefficients relative to
the temperature, and , are extracted as a function of A.
The extracted values are compared with results of the AMD
simulations using Gogny interactions with different density dependencies of the
symmetry energy term. The calculated values show a close relation
to the symmetry energy at the density at the time of the fragment formation.
From this relation the density of the fragmenting source is determined to be
. Using this density, the symmetry energy
coefficient and the temperature of fragmenting source are determined in a
self-consistent manner as and
MeV
Measurement of the plasma astrophysical S factor for the 3He(D, p)4He reaction in exploding molecular clusters
The plasma astrophysical S factor for the 3He(D, p)4He fusion reaction was
measured for the first time at temperatures of few keV, using the interaction
of intense ultrafast laser pulses with molecular deuterium clusters mixed with
3He atoms. Different proportions of D2 and 3He or CD4 and 3He were mixed in the
gas jet target in order to allow the measurement of the cross-section for the
3He(D, p)4He reaction. The yield of 14.7 MeV protons from the 3He(D, p)4He
reaction was measured in order to extract the astrophysical S factor at low
energies. Our result is in agreement with other S factor parameterizations
found in the literature
A novel determination of density, temperature and symmetry energy for nuclear multi-fragmentation through primary fragment yield reconstruction
For the first time primary hot isotope distributions are experimentally
reconstructed in intermediate heavy ion collisions and used with
antisymmetrized molecular dynamics (AMD) calculations to determine density,
temperature and symmetry energy coefficient in a self-consistent manner. A
kinematical focusing method is employed to reconstruct the primary hot fragment
yield distributions for multifragmentation events observed in the reaction
system Zn + Sn at 40 MeV/nucleon. The reconstructed yield
distributions are in good agreement with the primary isotope distributions of
AMD simulations. The experimentally extracted values of the symmetry energy
coefficient relative to the temperature, , are compared with those
of the AMD simulations with different density dependence of the symmetry energy
term. The calculated values changes according to the different
interactions. By comparison of the experimental values of with
those of calculations, the density of the source at fragment formation was
determined to be . Using this density, the
symmetry energy coefficient and the temperature are determined in a
self-consistent manner as and
Me
Laboratory Tests of Low Density Astrophysical Equations of State
Clustering in low density nuclear matter has been investigated using the
NIMROD multi-detector at Texas A&M University. Thermal coalescence modes were
employed to extract densities, , and temperatures, , for evolving
systems formed in collisions of 47 MeV Ar + Sn,Sn
and Zn + Sn, Sn. The yields of , , He, and
He have been determined at = 0.002 to 0.032 nucleons/fm and
= 5 to 10 MeV. The experimentally derived equilibrium constants for
particle production are compared with those predicted by a number of
astrophysical equations of state. The data provide important new constraints on
the model calculations.Comment: 5 pages, 3 figure
Experimental study of fusion neutron and proton yields produced by petawatt-laser-irradiated D2-3He or CD4-3He clustering gases
We report on experiments in which the Texas Petawatt laser irradiated a
mixture of deuterium or deuterated methane clusters and helium-3 gas,
generating three types of nuclear fusion reactions: D(d, 3He)n, D(d, t)p and
3He(d, p)4He. We measured the yields of fusion neutrons and protons from these
reactions and found them to agree with yields based on a simple cylindrical
plasma model using known cross sections and measured plasma parameters. Within
our measurement errors, the fusion products were isotropically distributed.
Plasma temperatures, important for the cross sections, were determined by two
independent methods: (1) deuterium ion time-of-flight, and (2) utilizing the
ratio of neutron yield to proton yield from D(d, 3He)n and 3He(d, p)4He
reactions, respectively. This experiment produced the highest ion temperature
ever achieved with laser-irradiated deuterium clusters.Comment: 16 pages, 6 figure
- …
