14 research outputs found
Immunoglobulin Genomics in the Guinea Pig (Cavia porcellus)
In science, the guinea pig is known as one of the gold standards for modeling human disease. It is especially important as a molecular and cellular biology model for studying the human immune system, as its immunological genes are more similar to human genes than are those of mice. The utility of the guinea pig as a model organism can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization of the guinea pig immunoglobulin (Ig) heavy and light chain genes. The guinea pig IgH locus is located in genomic scaffolds 54 and 75, and spans approximately 6,480 kb. 507 VH segments (94 potentially functional genes and 413 pseudogenes), 41 DH segments, six JH segments, four constant region genes (μ, γ, ε, and α), and one reverse δ remnant fragment were identified within the two scaffolds. Many VH pseudogenes were found within the guinea pig, and likely constituted a potential donor pool for gene conversion during evolution. The Igκ locus mapped to a 4,029 kb region of scaffold 37 and 24 is composed of 349 Vκ (111 potentially functional genes and 238 pseudogenes), three Jκ and one Cκ genes. The Igλ locus spans 1,642 kb in scaffold 4 and consists of 142 Vλ (58 potentially functional genes and 84 pseudogenes) and 11 Jλ -Cλ clusters. Phylogenetic analysis suggested the guinea pig’s large germline VH gene segments appear to form limited gene families. Therefore, this species may generate antibody diversity via a gene conversion-like mechanism associated with its pseudogene reserves
A Preliminary Analysis of the Immunoglobulin Genes in the African Elephant (Loxodonta africana)
The genomic organization of the IgH (Immunoglobulin heavy chain), Igκ (Immunoglobulin kappa chain), and Igλ (Immunoglobulin lambda chain) loci in the African elephant (Loxodonta africana) was annotated using available genome data. The elephant IgH locus on scaffold 57 spans over 2,974 kb, and consists of at least 112 VH gene segments, 87 DH gene segments (the largest number in mammals examined so far), six JH gene segments, a single μ, a δ remnant, and eight γ genes (α and ε genes are missing, most likely due to sequence gaps). The Igκ locus, found on three scaffolds (202, 50 and 86), contains a total of 153 Vκ gene segments, three Jκ segments, and a single Cκ gene. Two different transcriptional orientations were determined for these Vκ gene segments. In contrast, the Igλ locus on scaffold 68 includes 15 Vλ gene segments, all with the same transcriptional polarity as the downstream Jλ-Cλ cluster. These data suggest that the elephant immunoglobulin gene repertoire is highly diverse and complex. Our results provide insights into the immunoglobulin genes in a placental mammal that is evolutionarily distant from humans, mice, and domestic animals
Can Children Discriminate Sugar-Sweetened from Non-Nutritively Sweetened Beverages and How Do They Like Them?
BACKGROUND: Replacement of sugar-sweetened by non-nutritively sweetened beverages or water may reduce excess weight gain in children. However, it is unclear whether children like non-nutritively sweetened beverages as much as sugar-sweetened beverages. We examined whether children could taste a difference between non-nutritively sweetened beverages and matching sugar-sweetened beverages, and which of the two types of beverage they liked best. METHODS: 89 children aged 5 to 12 tasted seven non-nutritively sweetened beverages and matching sugar-sweetened beverages, for a total of 14 beverages. We used Triangle tests to check their ability to discriminate between the matched versions, and a 5-point scale to measure how much the children liked each individual beverage. RESULTS: Overall, 24% of children appeared to be genuinely capable of distinguishing between non-nutritively sweetened and sugar-sweetened beverages. The mean ± SD score for how much the children liked the non-nutritively sweetened beverages was 3.39 ± 0.7 and that for the sugar-sweetened beverages 3.39 ± 0.6 (P = 0.9) on a scale running from 1 (disgusting) to 5 (delicious). The children preferred some beverages to others irrespective of whether they were sugar-sweetened or non-nutritively sweetened (P = 0.000). Children who correctly identified which of three drinks contained the same sweetener and which one was different also showed no preference for either type. CONCLUSION: We found that about one in four children were able to discriminate between non-nutritively sweetened and sugar-sweetened beverages but children liked both varieties equally. Non-nutritively sweetened beverages may therefore be an acceptable alternative to sugar-sweetened beverages although water remains the healthiest beverage for children
