157 research outputs found
City rankings and the citizens: exposing representational and participatory gaps
Acritical reflection on the purposes, role and performance of city rankings through an holistic communicational approach is at the core of this article. Grounded on a conceptual framework that highlights the contemporary idea of the city—beyond the smart city and more as a co-intelligent, collaborative and co-creative entity, and on the performance outputs of city rankings as territorial and strategic communication tools that actually represent the state of cities, we address the citizens’ presence or contribute—as main city stakeholders—to city rankings. In order to make research tangible with a practical component, an exploratory comparative content analysis of three recognized city rankings: the CBI – City Brands Index 2017, the GCR – 2018 Global Cities Report, and the Global Liveability Index 2018—was carried out. Conclusive notes argue that in order to effectively represent cities, as they are lived, thought and built by their citizens in their everyday, city rankings must rely in more real-time, updated, people’s perception centred data, and embed more citizen participation and insights. Moreover, methodology transparency and accountability should be promoted in order to add trust value to city rankings.(undefined
Heat conduction in the disordered harmonic chain revisited
A general formulation is developed to study heat conduction in disordered
harmonic chains with arbitrary heat baths that satisfy the
fluctuation-dissipation theorem. A simple formal expression for the heat
current J is obtained, from which its asymptotic system-size (N) dependence is
extracted. It is shown that the ``thermal conductivity'' depends not just on
the system itself but also on the spectral properties of the fluctuation and
noise used to model the heat baths. As special cases of our heat baths we
recover earlier results which reported that for fixed boundaries , while for free boundaries . For other choices we
find that one can get other power laws including the ``Fourier behaviour'' .Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let
Infrared Spectroscopy of Nearby Radio Active Elliptical Galaxies
In preparation for a study of their circumnuclear gas we have surveyed 60% of a complete sample of elliptical galaxies within 75 Mpc that are radio sources. Some 20% of our nuclear spectra have infrared emission lines, mostly Paschen lines, Brackett γ, and [Fe II]. We consider the influence of radio power and black hole mass in relation to the spectra. Access to the spectra is provided here as a community resource
Bostonia: The Boston University Alumni Magazine. Volume 11
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
The Clustering and Halo Masses of Star Forming Galaxies at z<1
We present clustering measurements and halo masses of star forming galaxies
at 0.2 < z < 1.0. After excluding AGN, we construct a sample of 22553 24 {\mu}m
sources selected from 8.42 deg^2 of the Spitzer MIPS AGN and Galaxy Evolution
Survey of Bo\"otes. Mid-infrared imaging allows us to observe galaxies with the
highest star formation rates (SFRs), less biased by dust obscuration afflicting
the optical bands. We find that the galaxies with the highest SFRs have optical
colors which are redder than typical blue cloud galaxies, with many residing
within the green valley. At z > 0.4 our sample is dominated by luminous
infrared galaxies (LIRGs, L_TIR > 10^11 Lsun) and is comprised entirely of
LIRGs and ultra-luminous infrared galaxies (ULIRGs, L_TIR > 10^12 Lsun) at z >
0.6. We observe weak clustering of r_0 = 3-6 Mpc/h for almost all of our star
forming samples. We find that the clustering and halo mass depend on L_TIR at
all redshifts, where galaxies with higher L_TIR (hence higher SFRs) have
stronger clustering. Galaxies with the highest SFRs at each redshift typically
reside within dark matter halos of M_halo ~ 10^12.9 Msun/h. This is consistent
with a transitional halo mass, above which star formation is largely truncated,
although we cannot exclude that ULIRGs reside within higher mass halos. By
modeling the clustering evolution of halos, we connect our star forming galaxy
samples to their local descendants. Most star forming galaxies at z < 1.0 are
the progenitors of L < 2.5L* blue galaxies in the local universe, but star
forming galaxies with the highest SFRs (L_TIR >10^11.7 Lsun) at 0.6<z<1.0 are
the progenitors of early-type galaxies in denser group environments.Comment: 18 pages, 16 figures, 2 tables. Accepted for publication in the
Astrophysical Journa
Bostonia: The Boston University Alumni Magazine. Volume 12
Founded in 1900, Bostonia magazine is Boston University’s main alumni publication
Bostonia: The Boston University Alumni Magazine. Volume 9
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies
We present the final results from a high sampling rate, multi-month,
spectrophotometric reverberation mapping campaign undertaken to obtain either
new or improved Hbeta reverberation lag measurements for several relatively
low-luminosity AGNs. We have reliably measured thetime delay between variations
in the continuum and Hbeta emission line in six local Seyfert 1 galaxies. These
measurements are used to calculate the mass of the supermassive black hole at
the center of each of these AGNs. We place our results in context to the most
current calibration of the broad-line region (BLR) R-L relationship, where our
results remove outliers and reduce the scatter at the low-luminosity end of
this relationship. We also present velocity-resolved Hbeta time delay
measurements for our complete sample, though the clearest velocity-resolved
kinematic signatures have already been published.Comment: 52 pages (AASTeX: 29 pages of text, 8 tables, 7 figures), accepted
for publication in the Astrophysical Journa
A Revised Broad-Line Region Radius and Black Hole Mass for the Narrow-Line Seyfert 1 NGC 4051
We present the first results from a high sampling rate, multi-month
reverberation mapping campaign undertaken primarily at MDM Observatory with
supporting observations from telescopes around the world. The primary goal of
this campaign was to obtain either new or improved Hbeta reverberation lag
measurements for several relatively low luminosity AGNs. We feature results for
NGC 4051 here because, until now, this object has been a significant outlier
from AGN scaling relationships, e.g., it was previously a ~2-3sigma outlier on
the relationship between the broad-line region (BLR) radius and the optical
continuum luminosity - the R_BLR-L relationship. Our new measurements of the
lag time between variations in the continuum and Hbeta emission line made from
spectroscopic monitoring of NGC 4051 lead to a measured BLR radius of R_BLR =
1.87 (+0.54 -0.50) light days and black hole mass of M_BH = 1.73 (+0.55 -0.52)
x 10^6 M_sun. This radius is consistent with that expected from the R_BLR-L
relationship, based on the present luminosity of NGC 4051 and the most current
calibration of the relation by Bentz et al. (2009a). We also present a
preliminary look at velocity-resolved Hbeta light curves and time delay
measurements, although we are unable to reconstruct an unambiguous
velocity-resolved reverberation signal.Comment: 38 pages, 7 figures, accepted for publication in ApJ, changes from v1
reflect suggestions from anonymous refere
- …