173 research outputs found

    Prediction of spark kernel development in constant volume combustion

    Full text link
    Combustion initiation is studied in atmospheric pressure propane-air mixtures in a constant volume bomb with a high speed (10,000 fps) laser schlieren system. The spark current and voltage waveforms are simultaneously recorded for later model input. A phenomenological model for early flame kernel development is presented which accounts for the initial, breakdown generated, spark kernel and its subsequent growth. The kernel growth is initially controlled by the breakdown process and the subsequent electrical power input. A new, spark power induced, mass entrainment term is shown to model this initially rapid volume increase adequately while later growth is mainly dominated by diffusion. Results and model comparions are presented for the effects of power input, spark energy, and equivalence ratio.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26594/1/0000135.pd

    An evaluation tool kit of air quality micro-sensing units.

    Get PDF
    Recent developments in sensory and communication technologies have made the development of portable air-quality (AQ) micro-sensing units (MSUs) feasible. These MSUs allow AQ measurements in many new applications, such as ambulatory exposure analyses and citizen science. Typically, the performance of these devices is assessed using the mean error or correlation coefficients with respect to a laboratory equipment. However, these criteria do not represent how such sensors perform outside of laboratory conditions in large-scale field applications, and do not cover all aspects of possible differences in performance between the sensor-based and standardized equipment, or changes in performance over time. This paper presents a comprehensive Sensor Evaluation Toolbox (SET) for evaluating AQ MSUs by a range of criteria, to better assess their performance in varied applications and environments. Within the SET are included four new schemes for evaluating sensors' capability to: locate pollution sources; represent the pollution level on a coarse scale; capture the high temporal variability of the observed pollutant and their reliability. Each of the evaluation criteria allows for assessing sensors' performance in a different way, together constituting a holistic evaluation of the suitability and usability of the sensors in a wide range of applications. Application of the SET on measurements acquired by 25 MSUs deployed in eight cities across Europe showed that the suggested schemes facilitates a comprehensive cross platform analysis that can be used to determine and compare the sensors' performance. The SET was implemented in R and the code is available on the first author's website.CITI-SENSE, initiated in October 2012, is a four year Collaborative Project partly funded by the EU FP7-ENV-2012 under grant agreement 308524

    Phosphoinositide-binding interface proteins involved in shaping cell membranes

    Get PDF
    The mechanism by which cell and cell membrane shapes are created has long been a subject of great interest. Among the phosphoinositide-binding proteins, a group of proteins that can change the shape of membranes, in addition to the phosphoinositide-binding ability, has been found. These proteins, which contain membrane-deforming domains such as the BAR, EFC/F-BAR, and the IMD/I-BAR domains, led to inward-invaginated tubes or outward protrusions of the membrane, resulting in a variety of membrane shapes. Furthermore, these proteins not only bind to phosphoinositide, but also to the N-WASP/WAVE complex and the actin polymerization machinery, which generates a driving force to shape the membranes

    MemRx: "What-If" Performance Predictions for Varying Memory Size

    No full text
    Understanding and managing complex computer systems is quickly becoming intractable for an unaided administrator. Questions about how to provision server and distributed systems or how workload changes will affect system performance are often hampered by the lack of a clear understanding of how a workload behaves under various system configurations. In this paper we describe and evaluate MemRx, an operating system extension designed to allow an administrator or other systems management agent to answer what-if questions about a workload?s runtime when one important system parameter, main memory size, is increased. Our evaluation of a prototype implementation of MemRx in the Linux kernel shows that it can consistently predict the runtime of a suite of microbenchmark and application workloads to within 10% of their actual value as memory size increases. The runtime overhead imposed by MemRx is small enough (less that 6% in a worst case scenario) to allow the extension to run continuously
    corecore