884 research outputs found

    Evaluation of methods using topology and integral geometry to assess wettability.

    Get PDF
    HYPOTHESIS: The development of high-resolution in situ imaging has allowed contact angles to be measured directly inside porous materials. We evaluate the use of concepts in integral geometry to determine contact angle. Specifically, we test the hypothesis that it is possible to determine an average contact angle from measurements of the Gaussian curvature of the fluid/fluid meniscus using the Gauss-Bonnet theorem. THEORY AND SIMULATION: We show that it is not possible to unambiguously determine an average contact angle from the Gauss-Bonnet theorem. We instead present an approximate relationship: 2πn(1-cosθ)=4π-∫κG12dS12, where n is the number of closed loops of the three-phase contact line where phases 1 and 2 contact the surface, θ is the average contact angle, while κG12 is the Gaussian curvature of the fluid meniscus which is integrated over its surface S12. We then use the results of pore-scale lattice Boltzmann simulations to assess the accuracy of this approach to determine a representative contact angle for two-phase flow in porous media. FINDINGS: We show that in simple cases with a flat solid surface, the approximate expression works well. When applied to simulations on pore space images, the equation provides a robust estimate of contact angle, accurate to within 3°, when averaged over many fluid clusters, although individual values can have significant errors because of the approximations used in the calculation

    Coordination Dependence of Hyperfine Fields of 5sp Impurities on Ni Surfaces

    Full text link
    We present first-principles calculations of the magnetic hyperfine fields H of 5sp impurities on the (001), (111), and (110) surfaces of Ni. We examine the dependence of H on the coordination number by placing the impurity in the surfaces, on top of them at the adatom positions, and in the bulk. We find a strong coordination dependence of H, different and characteristic for each impurity. The behavior is explained in terms of the on-site s-p hybridization as the symmetry is reduced at the surface. Our results are in agreement with recent experimental findings.Comment: 4 pages, 3 figure

    Pore-scale modeling of two-phase flow: a comparison of the generalized network model to direct numerical simulation

    Get PDF
    Despite recent advances in pore-scale modeling of two-phase flow through porous media, the relative strengths and limitations of various modeling approaches have been largely unexplored. In this work, two-phase flow simulations from the generalized network model (GNM) [Phys. Rev. E 96, 013312 (2017)2470-004510.1103/PhysRevE.96.013312; Phys. Rev. E 97, 023308 (2018)2470-004510.1103/PhysRevE.97.023308] are compared with a recently developed lattice-Boltzmann model (LBM) [Adv. Water Resour. 116, 56 (2018)0309-170810.1016/j.advwatres.2018.03.014; J. Colloid Interface Sci. 576, 486 (2020)0021-979710.1016/j.jcis.2020.03.074] for drainage and waterflooding in two samples-a synthetic beadpack and a micro-CT imaged Bentheimer sandstone-under water-wet, mixed-wet, and oil-wet conditions. Macroscopic capillary pressure analysis reveals good agreement between the two models, and with experiments, at intermediate saturations but shows large discrepancy at the end-points. At a resolution of 10 grid blocks per average throat, the LBM is unable to capture the effect of layer flow which manifests as abnormally large initial water and residual oil saturations. Critically, pore-by-pore analysis shows that the absence of layer flow limits displacement to invasion-percolation in mixed-wet systems. The GNM is able to capture the effect of layers, and exhibits predictions closer to experimental observations in water and mixed-wet Bentheimer sandstones. Overall, a workflow for the comparison of pore-network models with direct numerical simulation of multiphase flow is presented. The GNM is shown to be an attractive option for cost and time-effective predictions of two-phase flow, and the importance of small-scale flow features in the accurate representation of pore-scale physics is highlighted

    Small Angle Crab Compensation for LHC IR Upgrade

    Get PDF
    A small angle crab scheme is being considered for the LHC luminosity upgrade. In this paper we present a 400MHz superconducting cavity design and discuss the pertinent RF challenges. We also present a study on the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, with RF noise sources

    Carrier induced ferromagnetism in diluted magnetic semi-conductors

    Full text link
    We present a theory for carrier induced ferromagnetism in diluted magnetic semi-conductor (DMS). Our approach treats on equal footing quantum fluctuations within the RPA approximation and disorder within CPA. This method allows for the calculation of TcT_c, magnetization and magnon spectrum as a function of hole, impurity concentration and temperature. It is shown that, sufficiently close to TcT_c, and within our decoupling scheme (Tyablicov type) the CPA for the itinerant electron gas reduces to the Virtual Crystal Approximation. This allows, in the low impurity concentration and low density of carriers to provide analytical expression for TcT_c. For illustration, we consider the case of Ga1−cMncAsGa_{1-c}Mn_{c}As and compare our results with available experimental data.Comment: 5 figures included. to appear in Phys. Rev. B (brief report

    Disorder effects in diluted ferromagnetic semiconductors

    Full text link
    Carrier induced ferromagnetism in diluted III-V semi-conductor is analyzed within a two step approach. First, within a single site CPA formalism, we calculate the element resolved averaged Green's function of the itinerant carrier. Then using a generalized RKKY formula we evaluate the Mn-Mn long-range exchange integrals and the Curie temperature as a function of the exchange parameter, magnetic impurity concentration and carrier density. The effect of the disorder (impurity scattering) appears to play a crucial role. The standard RKKY calculation (no scattering processes), strongly underestimate the Curie temperature and is inappropriate to describe magnetism in diluted magnetic semi-conductors. It is also shown that an antiferromagnetic exchange favors higher Curie temperature.Comment: tex file + 4 .eps figures are included. submited to PR

    A thermodynamically consistent characterization of wettability in porous media using high-resolution imaging

    Get PDF
    Conservation of energy is used to derive a thermodynamically-consistent contact angle, θt, when fluid phase 1 displaces phase 2 in a porous medium. Assuming no change in Helmholtz free energy between two local equilibrium states we find that Δa1scosθt=κϕΔS1+Δa12, where a is the interfacial area per unit volume, ϕ is the porosity, S is the saturation and κ the curvature of the fluid-fluid interface. The subscript s denotes the solid, and we consider changes, Δ, in saturation and area. With the advent of high-resolution time-resolved three-dimensional X-ray imaging, all the terms in this expression can be measured directly. We analyse imaging datasets for displacement of oil by water in a water-wet and a mixed-wet sandstone. For the water-wet sample, the curvature is positive and oil bulges into the brine with almost spherical interfaces. In the mixed-wet case, larger interfacial areas are found, as the oil resides in layers. The mean curvature is close to zero, but the interface tends to bulge into brine in one direction, while brine bulges into oil in the other. We compare θt with the values measured geometrically in situ on the pore-scale images, θg. The thermodynamic angle θt provides a robust and consistent characterization of wettability. For the water-wet case the calculated value of θt gives an accurate prediction of multiphase flow properties using pore-scale modelling

    Photoemission studies of Ga1−x_{1-x}Mnx_{x}As: Mn-concentration dependent properties

    Full text link
    Using angle-resolved photoemission, we have investigated the development of the electronic structure and the Fermi level pinnning in Ga1−x_{1-x}Mnx_{x}As with Mn concentrations in the range 1--6%. We find that the Mn-induced changes in the valence-band spectra depend strongly on the Mn concentration, suggesting that the interaction between the Mn ions is more complex than assumed in earlier studies. The relative position of the Fermi level is also found to be concentration-dependent. In particular we find that for concentrations around 3.5--5% it is located very close to the valence-band maximum, which is in the range where metallic conductivity has been reported in earlier studies. For concentration outside this range, larger as well as smaller, the Fermi level is found to be pinned at about 0.15 eV higher energy.Comment: REVTeX style; 7 pages, 3 figure
    • …
    corecore