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Theory and simulation: We show that it is not possible to unambiguously determine an average contact
angle from the Gauss-Bonnet theorem. We instead present an approximate relationship:
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Findings: We show that in simple cases with a flat solid surface, the approximate expression works well.
When applied to simulations on pore space images, the equation provides a robust estimate of contact
angle, accurate to within 3°, when averaged over many fluid clusters, although individual values can have

significant errors because of the approximations used in the calculation.
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materials at the pore, or micron, scale [1,2]. One topic of active
interest is the assessment of wettability, contact angle, within
the pore space [3], often associated with estimates of interfacial
curvature [4]. Recent work has developed a suite of analysis tech-
niques to measure contact angle automatically [5-10] and, com-
bined with the determination of curvature, has been used to
quantify wettability and capillary pressure [4,11-13].

Two approaches can be used to determine contact angle. The first
is geometric, in that the angle that the fluid/fluid meniscus makes
with the solid is determined directly from the image [3]. This
method has the advantage of being straightforward whilst auto-
matic methods can generate millions of point values from billion-
voxel images [14]. There are two limitations, however. The first is
that at the three-phase contact line, the identification and segmen-
tation of the three phases (two fluids and the solid) is uncertain,
which can lead to errors in the estimates, depending on image reso-
lution, with a tendency for the values to approach 90° (see, for
instance [15-18]). The second concern is that, even if accurately
determined, these angles may represent hinging values on a rough
or altered-wettability surface so are not necessarily the correct
angles to use to characterize displacement or as input into pore-
scale models [15].

The other approach is to use an energy balance [15,19]. This has
the advantage of finding the contact angle associated with displace-
ment, but also suffers from two possible drawbacks. Firstly, it is
based on quantifying differences in fluid configurations to find an
average value, rather than finding local variations in wettability.
However, simulation studies have shown that it is possible to find
the contact angle on a pore-by-pore basis when individual displace-
ment events are confined to a single pore region [20]. Secondly, the
energy balance does not consider viscous dissipation and is there-
fore inaccurate for drainage processes with Haines jumps [21],
although this effect can be included in the analysis [20].

Recently, concepts in topology and integral geometry have sug-
gested a powerful approach to the analysis of multiphase flow in
porous media [22,23]. Sun et al. [17,24] have used the Gauss-
Bonnet theorem to derive an effective macroscopic contact angle
0™ to study the relationship between intrinsic, advancing and
receding angles on rough surfaces. Sun et al. [17] showed that
0™ was close to the average contact angle measured automati-
cally [5] within a water-wet sandstone. This approach is, potentially,
a major advance, allowing an accurate estimation of contact angle
inside porous materials, grounded on fundamental topological
principles.

In this paper we first explore the use of the Gauss-Bonnet theo-
rem to determine contact angle, inspired by the work of Sun et al.
[17,24].1tis not possible to uniquely associate an average angle with
surface integrals of Gaussian curvature of fluid interfaces and the
Euler characteristic of fluid clusters. This is because the orientation
of the three-phase contact line relative to the fluid/fluid and fluid/-
solid interfaces is, in general, not uniform along the three-phase con-
tact line. However, we do suggest an approximate relation,
consistent with the work of Sun et al. [17], under certain assump-
tions. We then explore the use of this relationship using simulated
distributions of fluids in the pore space, for which the configurations
can be determined accurately and where the wettability is known.

2. The Gauss-Bonnet theorem and contact angle
2.1. External angles of a polygon and curvature

We will start with a pedagogic presentation of topology rele-
vant to flow in porous media for readers who are unfamiliar with
the subject (see, for instance, [25] for further reading). Fig. 1 shows
a polygon: the sum of the external angles is 2m: > ! o =27

where we have n external angles «;. Note that this relationship
holds even for a concave polygon, where the angles in the concav-
ity are negative (for example o4 in Fig. 1). If we have a smooth
shape, without corners, there is a similar relationship, if we intro-
duce the concept of curvature, k. At any point L on a smooth curve,
I, a circle can be fitted: the curvature is the inverse of its radius
R,k =1/R.Then [k dl = [R/R du = [du = 27 where u is an angu-
lar coordinate along I: this will decrease along I in concave regions
where the curvature is negative. The final case is a shape which is a
combination of smooth and angular regions. The general formula is

/Kdl+zn:o<iz/du+zn:oq:2n. (1)

2.2. The Gauss-Bonnet equation in three dimensions

We now consider the extension of Eq. (1) to three dimensions.
Here, we start with a smooth surface bounding a three-
dimensional object. The Gauss-Bonnet theorem states [26]

d

/al
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L

Fig. 1. An illustration of angles and curvatures in two dimensions. (a) For a
polygon: ! o; = 27. Note that o4 in a concavity is negative. (b) For a smooth
closed loop the equivalent relationship is [ dl= [du=2m. (c) For a two-
dimensional shape bounded by straight sides, sharp angles and smooth lines, the
generalization of the relationship between curvature and angles is given by Eq. (1).
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/KG ds = 4my, 2)

which provides a relationship between the topology of an object
and the integral of the Gaussian curvature across the bounding sur-
face. At any point on a surface we can define two principal curva-
tures in orthogonal directions, x, and x;, with corresponding radii
R, and R, respectively. If we consider a sphere of radius R, these
two radii are equal: R, = R, = R; for a cylinder of radius R,R, =R
while R, = co. If the surface is saddle-shaped one of the radii of cur-
vature is negative. The Gaussian curvature, K¢ = K.K5, which
appears in Eq. (2), is the product of the two principal curvatures:
K¢ = 1/R2 for a sphere, k; = 0 for a cylinder, while k¢ < O for a sad-
dle. The other term in Eq. (2) is y, the Euler characteristic which is a
measure of the topology of an object: 1 plus the number of holes in
the structure minus the number of loops. Thus Eq. (2) relates the
integral of the Gaussian curvature of an object to its topology.
Let’s take a simple example. A solid sphere has an Euler charac-
teristic of 1 (it has no holes or loops). The surface area of a sphere

of radius R is 47R?, so the integral of the Gaussian curvatue (which
is constant) over this surface is 47 in agreement with Eq. (2). In
general though, Eq. (2) is a remarkable result, as it states that how-
ever much we distort a sphere (or indeed any object), as long as we
do not create holes or loops, the integral of the Gaussian curvature
over the surface remains constant.

We will now apply the Gauss-Bonnet theorem to study fluids in
a porous medium. First, we will describe the fluid arrangement
that we will consider, illustrated in Fig. 2. We have two fluid
phases, 1 and 2, separated by a meniscus, described by the surface
(or interface) Sy,. The phases also contact the solid: the three-phase
contact line, I, between phases 1, 2 and the solid forms a closed

loop, and we define a contact angle 0 measured through phase 1.
The solid surface in contact with phase 2 is Sy;. The object we will
consider is a blob, cluster or ganglion of phase 2: there is a smooth
surface between the two fluid phases, another surface between
phase 2 and the solid, and a discontinuity in orientation of the sur-
face at the three-phase contact line - this is encapsulated by the
contact angle. We can consider applying Eq. (2) to the cluster of
phase 2, where there is an additional contribution to the curvature
from the contact line.

Sun et al. [17] derived a version of the Gauss-Bonnet theorem,
Eq. (2), as follows:

/Kclz dSiz + / Kcos ASys + kg = 4my. 3)

Here we integrate over both the fluid/fluid meniscus, S;,, and the
contact of phase 2 with the solid, Sy;. There is a final term, kg, called
the deficit curvature which quantifies the additional contribution
from the contact line.

Before continuing, we will explain the purpose of this analysis.
The direct evaluation of k; involves an integral along the contact
line that - as we show later - requires an estimation of the orien-
tation of this line relative to the fluid/fluid and fluid/solid inter-
faces, which is similar to what is done to find contact angle
directly [5], although even more involved. Hence, it suffers from
the same uncertainties and errors in segmentation. What we will
look for, as in [17], and discussed in detail later, is a general analyt-
ical relationship between k; and contact angle (or an average
value), and then use Eq. (3) to estimate this contact angle from
integral of Gaussian curvature over the fluid/fluid meniscus, which

Phase 1

Contact line, [

Fig. 2. An illustration of fluid arrangements. We consider two phases, 1 and 2, in contact with a surface. (a) A vertical cross-section showing the surfaces between the two
phases Si,, and between the solid and phase 2, S,;. The contact angle, which may vary spatially, is 6. (b) A schematic horizontal cross-section with the contact line, /, where the

two fluid phases meet the solid.
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can be determined with reasonable accuracy from pore-space
images [27,18].

2.3. Evaluation of the deficit curvature

Physically the deficit curvature k, in Eq. (3) accounts for the fact
that there is a kink in the surface of the cluster of phase 2 at the
three-phase contact line, or a discontinuity in the orientation of a
tangent plane to the surface. This is represented geometrically by
the contact angle. If the contact angle is 0 (complete wetting) the
entire surface (the union of S;; and Sy) remains smooth, k; =0
and Eq. (3) reduces to relating the surface integral of the Gaussian
curvature of an unbounded shape to its Euler characteristic, Eq. (2).
If the contact angle is not 0O, there is a sharp change in orientation
of the surface of phase 2 at the contact line, as it passes from con-
tact with phase 1 to the solid.

To evaluate kg4, which from Eq. (2) represents the integral of the
Gaussian curvature in the neighbourhood of the contact line, we
mathematically smooth the surface in an infinitesimal region as
shown in Fig. 3. Locally the surface near the contact line is a patch
of a torus: we call this surface S,. The radius of curvature of the con-
tact line is R at point L, while r is the radius of curvature in the
plane perpendicular to the contact line: R>>r and we can take
the limit that r — 0.

a

Phase 1
S12

Phase 2

Fig. 3. An illustration of how we compute the curvature associated with the three-
phase contact. (a) An enlargement of an arbitrary region close to the contact line at
a point L in vertical cross-section. The contact angle 6 is indicated. We replace the
sharp boundary between S;; and S,; at this point with a curved surface of
infinitesimal radius of curvature r,S;, as shown. The horizontal axis lies in the plane
of the contact line at L. The angles o and f indicate the orientation of S;; and Sy
respectively at the three-phase contact. 6 = o + . v is the local angular coordinate
of the curved interface S;. (b) A schematic horizontal cross-section of the contact
line, I. At point L the radius of curvature in the plane in the neighbourhood of L is R.
u is the local angular coordinate.

We first define the geometry local to a point on the three-phase
contact line. For convenience we define the plane coincident with
the contact line I as horizontal. The contact angle is 6. A line in the
vertical plane perpendicular to the meniscus, the surface Si,,
makes an angle o to the horizontal, while the perpendicular to
the solid S, makes an angle —p (as drawn in Fig. 3 it is oriented
below the horizontal). Then 0 = o + .

On the local torus we define a coordinate system u and v such
that a distance increment around the torus in a plane perpendicu-
lar to the contact line is rdv, while it is Rdu parallel to the contact
line. A surface element dS; = rR dudv. Then the deficit curvature kg,
which obeys Eq. (3), can be written as a surface integral of the
Gaussian curvature:

2n o
ks = / / Ke TR dvdu, (4)
0 -B

where K¢ is the Gaussian curvature of a torus. This will not be
derived here, but it can be shown that [28]:

cos v

Kep=—o— .
“ " r[R+rcosv)

(5)
We consider the limit r < R such that k¢ = cos v/Rr and hence Eq.
(4) becomes:

2n o 2n
kg = / / cos v dvdu = / sino + sin § du. (6)
Jo Jp Jo

We cannot trivially perform the integral over u since « and  may be
functions of u in general - the meniscus and solid do not necessarily
maintain a constant orientation at the contact line.

Then, recalling that 0 = o + 8, we eliminate o in Eq. (6) using
sino = sin(f — f) = sinfcos § — cos Osin § to obtain:

2n
ks = / sinfcos + (1 — cos 0) sin B du. (7)
0

Eq. (7) shows that there is no unique relationship between the def-
icit curvature and the contact angle; it also depends on B, the orien-
tation of the contact line and the solid surface. This equation is
similar to the expression in [17] (see their Eq. (S9) in the Supple-
mentary Material).

2.4. Testing the Gauss-Bonnet equation on simple examples

To demonstrate the analysis, we will consider three examples
illustrated in Fig. 4; in each one the contact angle and orientation
B will be constant around the contact line. In this case, from Egs.
(6) and (7), we have:

ks = 2m(sino + sin B) = 2m[sinfcos f + (1 — cos 6) sin f3]. (8)

We have labelled the cases in Fig. 4 such that the angles o and g cor-
respond to the same angles shown in Fig. 3.

The first, easiest, example 1 is a droplet on a flat surface: y = 1.
Here § = m/2 and the Gaussian curvature of Sy, is zero. Hence we
only consider S;; in Eq. (3) to find:

ks =4n —2n(1 — sina) = 27(1 + sina) = 27(1 — cos 0), 9)

using o = 6 — 7/2 in this case, which corresponds to Eq. (8).

The second example is when both the meniscus and the solid
form parts of spheres. Using simple geometry, the surface area of
a sphere of radius r, to an angle ©/2 — o to the horizontal, as
shown in Fig. 4, is 2nr2(1 — sina). Similarly the area of the por-
tion of the sphere representing the solid is 27rZ(1 — sin ), where
rp is the radius of the sphere. The Gaussian curvature of the sur-
face, S, is 1/r2 and the surface S,; is 1/r2. Hence we can write
Eq. (3) as:
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a Phase 1

9 SZS
ALV VLDV VLV
Solid

; Phase 1
'

C Phase 1

Fig. 4. Three simple examples that we use to determine contact angle from the
Gauss-Bonnet theorem. The angles o and p correspond to those shown in Fig. 3. (a)
Phase 2 resting on a flat surface. (b) Phase 2 resting on a concave surface. (c) Phase 2
resting on a convex surface, such as the surface of a bead or .spherical grain.

/ Kg12 dSu -I-/ Kgas dSZS = 27'[(2 —sino — sin ﬁ) (]0)

The Euler characteristic of the cluster of phase 2 is 1 (the same as a
sphere). Hence to agree with Eq. (3):

ks =4m — 272 — sina — sin ) = 27(sina + sin ), (11)

which is correct - that is, consistent with Eq. (8) for constant « and
p.

In the third example the solid bulges into phase 2: o < 0 and
B> m/2. We can define o = —a and ' = m — B. Then the areas of
S12 and Sy are 27mr?(1 +sina’) and 27r(1 —sin f') respectively.
As before we obtain from Eq. (3):

kg =4m —2m(2 +sino’ —sin f') = 2w(—sina’ + sin )
= 27(sina + sin ), (12)

which again is consistent with Eq. (8).

2.5. A simple relationship between Gaussian curvature and contact
angle

These examples suggest an approximate yet general relation-
ship between Gaussian curvature and contact angle through mak-
ing three assumptions. (i) We assume that an arbitrary rough
surface has, on average, a zero Gaussian curvature, which means
that the integral over Sy in Eq. (3) vanishes. (ii) Furthermore, we
consider that, on average, the orientation of the contact line is such
that § has a mean value of around 7/2. Under these circumstances
we have a situation which is a simple generalization of a drop on a
flat surface, example 1, with k4 given by Eq. (9). We may have more
than one contact line loop, and each one will add to the deficit cur-
vature [17]. This leads to the equation, combining Eq. (9) with Eq.
(3):

27n(1 — cos ) = 4my — / Kci2 dSt2, (13)

where n is the number of contact line loops where the single
cluster of phase 2 touches the solid. However, as we show later,
this does not lead to accurate results. We make one final assump-
tion: (iii) we treat each cluster of phase 2 to be topologically
equivalent to a sphere and so y = 1. This appears to be a strong
assertion for complex clusters with holes and loops. We will, in
the next section, test these approximations and discuss their
implications. If we make these three simplifications, we further
simplify Eq. (13) to:

2nn(1 — cos 0) = 4w — / Kci2 dSqz. (14)

We can use Eq. (14) to estimate an average contact angle for
every discrete cluster of phase 2 in a pore-scale image. Since the
orientation of the surface is not always flat, the right-hand side
of Eq. (14) will tend to be lower than if a flat surface were present:
this means that the estimated value of 1 — cos® may be smaller
than its real value, yielding estimates of 0 erroneously close to
/2 (90°), as encountered when the geometric contact angle is
measured [18,14]; on the other hand, consideration of small loops
on the surface may tend to underestimate the contact angle. Sun
et al. [17], using a sphere on a flat surface (our example 1), identi-
fied a macroscopic contact angle 0™ with 7(1 — cos 0)/2. They
found good agreement with the analytical result when a suffi-
ciently refined surface mesh was used.

3. Assessment and validation using direct numerical simulation

We will demonstrate the use of Eq. (3) and test the accuracy of
Eq. (14) using lattice Boltzmann simulations of multiphase flow in
porous media. The advantage of using a simulation method is that
the results are unaffected by errors or uncertainty in image acqui-
sition and segmentation. We will compute the terms on the right-
hand-side of Eq. (14) to estimate the contact angle and compare
with the input to the simulations. The lattice Boltzmann method
is used with a precise wetting boundary condition to specify local
contact angles: details of the approach and validation are pre-
sented elsewhere [29,30].

We will consider four cases, Fig. 5:

. A spherical droplet of phase 2 placed on a flat surface.

. A spherical droplet of phase 2 placed on a curved solid surface.

. A ganglion of phase 2 in a triangular capillary.

. Residual ganglia of phase 2 obtained from simulations of multi-
phase flow in a beadpack and Bentheimer sandstone.

A WN =
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a b

Fig. 5. The four simulation cases used to measure the relationship between contact angle and surface integrals of the Gaussian curvature. (a) Case 1: a spherical droplet
placed on a flat surface. (b) Case 2: a spherical droplet placed on a spherical solid grain. (c) Case 3: a droplet in a triangular capillary. (d) Case 4: residual ganglia in pore-space
images of a beadpack, and (e) Bentheimer sandstone. Phase 2 and the solid surface are shown in transparent red and green, respectively, while phase 1 is not shown. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.1. Simulation conditions

The simulation conditions for the four cases are summarized in
Table 1. We used densities and viscosities of p = p; = p, = 1000
kg/m® and u = u, = u, = 1 mPa-s respectively, while the interfa-
cial tension between the fluid phases was ¢ = 25 mN/m. For the
first two cases, we used simple solid geometries where the Gaus-
sian curvature of the interface is analytically determined.

For case 1, in the z-direction, a wall boundary was placed at the
top and bottom of the domain, while a periodic boundary condition
was applied in the other directions. Initially, a semi-spherical dro-
plet of phase 2 with a radius of 20 lattice nodes was placed at the
bottom of the domain, while the rest of the domain was filled with
phase 1. For this case we simulated a range of contact angles, sim-
ilar to the example studied in [30].

For case 2, a spherical solid with a radius of 20 lattice nodes was
placed at the lower part of the domain. A periodic boundary condi-
tion was applied to the boundaries in all the directions. Initially, a
known volume of phase 2 was placed on the spherical solid, while
the rest of the domain was filled with phase 1. The simulations
were performed until they reached an equilibrium state. For this
case we studied contact angles of 60° and 120°, similar to the
example studied in [30].

Table 1
Details of the simulation conditions for the four cases studied.
Ganglion configuration Voxels Time steps
Case 1 Flat surface 101 x 101 x 101 5« 104
Case 2 Curved surface 101 x 101 x 101 5% 104
Case 3 Triangular prism 49 x 24 x 24 5% 104
Case 4 Pore-space images 348 x 288 x 288 > 10°

For case 3, a cylindrical pore structure with an isosceles triangu-
lar cross-section was used of length 175.42 um (49 lattice nodes),
while the triangle side lengths were 71.6 um, 78.6 um and 78.6
pum. A periodic boundary condition was applied to the direction
perpendicular to the cross-section. Initially, a known volume of
phase 2 was placed in the centre of the pore structure, while the
rest of the domain was filled with phase 1. The simulations were
run until they reached an equilibrium state. For this case we
imposed a contact angle of 45°, similar to the example studied in
[31].

For case 4, we used two pore structures: a synthetic image of a
beadpack and a micro-CT image of a Bentheimer sandstone. The
porosity of these structures were 36% for the beadpack, and 21%
for Bentheimer sandstone. Porous plates wetting to phases 1 and
2 were placed at +x and —x faces of the porous domain respec-
tively, while the boundaries in the other directions were closed
with a solid boundary. We applied a contact angle of 45°. Drainage
simulations were performed in the —x-direction by gradually
increasing the phase 2 pressure through a constant pressure
boundary condition at the phase 2-wet porous plate region, while
the pressure of phase 1 was maintained constant through a con-
stant pressure boundary condition at the other porous plate. After
the simulations reached an irreducible saturation of phase 1, phase
1 was injected in the +x direction by gradually decreasing the pres-
sure of phase 2 while keeping the pressure of phase 1 constant. The
simulations were performed until the system reached the residual
saturation of phase 2. This simulation condition mimics porous
plate capillary pressure measurements in the laboratory. Further
details can be found in [20,32].

3.2. Estimation of contact angle

In the simulations, the fluid occupancy in each lattice node was
obtained based on a colour function, p", which takes a value of 1 in
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phase 2 and —1 in phase 1, while it takes the value of -1 < p" < 1
in the fluid/fluid interface region. Our lattice Boltzmann model is
classified as a diffusive interface model which produces a slightly
diffusive interface with a thickness of 2 to 3 lattice nodes [20,32].
The exact location of the fluid/fluid interface, Si», is given by a con-
tour surface corresponding to pV = 0, which has smoothness below
the resolution of the simulation grid.

The solid surface covered with oil was extracted from the sim-
ulation results as a triangulated surface. Then we applied 600 iter-
ations of Laplacian smoothing to this surface. This provides
sufficient smoothness while maintaining the original shape of a
surface [27,31].

The fluid/fluid and fluid/solid interfaces were modelled as trian-
gulated surfaces on which the Gaussian curvature, kg, was com-
puted using commercial image analysis software (Avizo). This
was performed by fitting a quadratic form to the elemental trian-
gulated surfaces, then the magnitude and direction of the principal
curvatures were obtained from the eigenvalues and eigenvectors of
the fitted quadratic form [4]. The integral of the Gaussian curvature
was obtained by taking an area-weighted summation of x for all
the triangulated surface elements.

Table 2 shows a contact angles obtained for cases 1 to 3 where
relatively simple geometries were considered. There is good agree-
ment between the input contact angle and the value determined
using Eq. (14) when the approximations used in the analysis are
valid ([ xdS;; =0 and g = m/2), namely a flat solid surface ori-
ented in the plane of the contact line, cases 1 and 3. The contact
angle can be evaluated within 5°.

For case 2, when we have a curved solid boundary, representing
a ganglion on a spherical grain, the use of Eq. (14) does not work, as
the assumption of a flat solid surface oriented with the contact line
is no longer valid. However, when the full equation is employed,
Eq. (3), accounting for the solid curvature, [ x¢dS,;, and its orienta-
tion. B, with Eq. (8) to find k4, we can obtain contact angles with
similar accuracy to that found for cases 1 and 3.

For case 4, contact angle was determined for residual clusters of
phase 2 in the beadpack and Bentheimer sandstone. There were 47
and 78 disconnected ganglia in the beadpack and Bentheimer
sandstone, respectively. We chose clusters whose volume was

greater than 10* voxels for the analysis, resulting in 7 clusters for
the beadpack and 17 clusters for Bentheimer sandstone, which
accounted for 99% and 97% of the total volume of residual phase
2, respectively. Fig. 6 illustrates the steps taken to perform the
analysis for this fourth case, both on a single cluster and for all
the clusters in the image. The integral of the Gaussian curvature
was calculated on the simulated interface, Fig. 6b and e, while
the number of closed contact loops were obtained from the
extracted three-phase contact line (boundary voxels of different

Table 2

phases), Fig. 6¢ and f. As discussed above we assumed y =1 for
all the clusters.

Table 3 shows the estimated contact angles for the pore-space
images on a cluster-by-cluster basis. It can be seen that for individ-
ual ganglia there can be significant errors in the measurement,
since the assumptions made in Eq. (14) - a flat surface oriented
with the contact line - may not be valid. There is no clear relation-
ship between cluster size and degree of error. However, when aver-
aged over all the ganglia, the contact angle is determined to within
3°, which indicates that this simple approach may indeed provide a
valuable average assessment of pore-scale wettability.

3.3. Evaluation of the approximations made

In this section we will critically examine the approximations
made in the use of Eq. (14) to estimate contact angle. The first
and most obvious assumption is that the Euler characteristic, ¥,
is 1. As evident from visual inspection of Fig. 6 some ganglia con-
tain loops and hence do not have y = 1 (the topological equivalent
of a solid sphere). We analysed every ganglion and counted the
number of loops and holes to calculate y, which is 1 - the number
of loops + the number of holes. We then replaced 47 in Eq. (14)
with 47wy, Eq. (13): the estimated contact angles are shown in
Table 3. What we find is that for all three cases where the Euler
characteristic is different from 1, the calculated contact angle is
undetermined: this means that | cos0 |> 1 and so a physical value
of 0 cannot be found. The reason for this is that we cannot, in these
cases, ignore the contribution of the fluid/solid curvature. We can
see why this is the case if we consider an example of a cluster con-
taining a hole - a hole that surrounds a solid grain. Then the Euler
characteristic is 1 + 1 = 2, adding an additional 47 to the right-
hand-side of Eq. (3), which has to be exactly balanced by the inte-
gral of the Gaussian curvature around the grain which, from Eq. (2),
is 4m. Similarly, for a cluster with a loop, the solid-fluid Gaussian
curvature has to provide a negative contribution.

This analysis suggests that we should, instead, consider Eq. (3)
in its entirety. This is presented in the final column of Table 3.
However, we find that in all but two cases the angle is undeter-
mined; this approach simply does not work on pore-space images.
The problem is not the evaluation of the orientation angle g, but
the computation of the solid/fluid Gaussian curvature: the unde-
termined values shown in Table 3 represent cases where regardless
of 0 and g no physical values can be assigned that enable Eq. (3) to
be obeyed.

In our simulations, and indeed from experimental pore-space
images, the fluid/fluid interface is, on physical grounds, smooth.
Hence it is possible to extract this meniscus and compute its total
and Gaussian curvature with reasonable accuracy, as quantified in

The results of contact angle obtained for cases 1 to 3. In case 2, the orientation angle of the three phase contact line, $, and the integral of the Gaussian curvature, [ K¢dS,s, were

analytically obtained based on the input contact angle.

Case Input 0 B [ KcdSas Estimated 0
by Eq. (14) by Egs. (3) and (8)
[degrees] [degrees] [-] [degrees] [degrees]
Case 1 30.0 90.0 0.0 34.8 34.8
60.0 90.0 0.0 62.6 62.6
90.0 90.0 0.0 91.2 91.2
120.0 90.0 0.0 121.0 121.0
150.0 90.0 0.0 149.9 149.9
Case 2 60.0 1215 0.9 325 64.0
120.0 154.6 3.6 57.4 1221
Case 3 45.0 90.0 0.0 48.0 48.0
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1.00 mm -
Gaussian curvature [voxel™]

Fig. 6. The analysis steps used to determine contact angle from simulations in pore-space images. Here examples are shown for the Bentheimer sandstone dataset. (a) A
single ganglion (red) shown in the pore space (green). (b) The fluid/fluid meniscus, the surface S;,, is extracted from the simulated fluid configurations. The computed
Gaussian curvature, K, on Sy, is shown. (¢) The contact lines (loops) are identified. These steps are applied to all the clusters (ganglia) in the image. (d) The individual ganglia
shown in different colours. (e) The computed Gaussian curvature, K¢, on Sy,. (f) The contact lines (loops). The individual closed loops are shown in different colours. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3

The determination of contact angle, 0, from individual clusters in pore-space images, case 4. The input contact angle is 45°. U refers to a contact angle that cannot be determined.
The average value ignores the cluster for which contact angle could not be determined. We show values computed using Eq. (14) which ingores the cluster topology and solid/
fluid Gaussian curvature, using Eq. (13) which includes the Euler characteristic. , of the clusters, and the full form of the Gauss-Bonnet equation, Eq. (3).

Cluster size Number Euler characteristic 0 (degrees) 0 (degrees) 0 (degrees)
(voxels) of loops x Eq. (14) Eq. (13) Eq. (3)
Beadpack

822604 48 -5 31.0 §) u
97675 3 1 47.8 47.8 u
73496 6 1 32.0 32.0 u
65164 4 1 34.7 34.7 U
57231 8 1 219 219 131.1
56818 2 1 40.2 40.2 u
12825 1 1 95.9 95.9 U
Average 434

Bentheimer sandstone

372983 72 -1 15.5 §) u
276282 52 1 U U u
246618 30 0 16.8 §) U
99568 14 1 29.2 29.2 U
94948 17 1 26.9 26.9 U
89031 9 1 35.6 35.6 u
86118 9 1 41.6 41.6 u
83128 9 1 343 343 U
44527 13 1 273 273 118.2
34172 10 1 23.6 23.6 U
31718 6 1 39.6 39.6 u
23504 2 1 84.0 84.0 u
18291 4 1 48.9 48.9 u
12280 6 1 33.7 33.7 U
12169 3 1 60.1 60.1 U
10931 1 1 116.2 116.2 U
10018 4 1 50.5 50.5 u

Average 42.7
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previous work [27]. On the other hand, the solid/fluid interface, in
both these simulations, and in imaging experiments, is segmented
as a voxelized surface which can be rough at all length scales. Even
the beadpack, for which the grains are smooth, has sharp contacts
with divergent curvature. While the surface is smoothed to remove
voxelization artefacts, this does not guarantee that the Gaussian
curvature can be found accurately. Hence for both of the samples
studied, standard image analysis methods were unable to compute
the integral of the Gaussian curvature reliably, largely due to dis-
tortion near the three-phase contact line.

4. Conclusions

We have presented concepts in topology and integral geometry
relevant to the study of multiphase flow in porous media. We have
shown that the Gauss-Bonnet theorem does not provide a unique
relationship between the integral of the Gaussian curvature of
the surface of a fluid phase cluster, its topology and contact angle.
We have presented, however, an approximate relationship under
the assumption that the fluid-solid surface has a zero average
Gaussian curvature (it is topologically flat) and is oriented, on aver-
age, in the plane of the contact line: this extends the work of
[17,24] to provide a simple-to-apply relationship between topol-
ogy and wettability.

We tested our theoretical analysis against lattice Boltzmann
simulations of multiphase flow in porous media. We showed that
when the assumptions of the analysis are valid, the contact angle
can be determined accurately. When applied to simulations of
residual non-wetting phase saturation in pore-space images, the
average contact angle was accurate to within 3° for the cases stud-
ied. However, individual estimates for single clusters could be sig-
nificantly in error because of the approximations used in the
analysis.

We also showed that attempting to calculate an average contact
angle from the full form of the Gauss-Bonnet theorem, including
the Gaussian curvature of the solid/fluid interface was not success-
ful, because of uncertainties in the evaluation of this curvature
over a voxelized interface, even after smoothing.

Overall, the use of the Gauss-Bonnet theorem, as introduced
by Sun et al. [17], does provide a useful methodology to deter-
mine an average contact angle. It is a complement to methods
that evaluate curvature and contact angle geometrically from
pore-space images [4,3,5]. It provides a topological counterpart
to the thermodynamic contact angle that characterizes a dis-
placement process [15].

Future work could be devoted to extending this analysis to a
wider range of porous media, wettabilities, and to the analysis of
experimental datasets. We could consider the analysis of wettabil-
ity in mixed-wet media where the Gaussian curvature of the fluid
menisci is negative [12] and for intermediate saturations where
both phases are continuous throughout the image domain. It
would also be of value to examine and reduce the errors in the cal-
culation of the Gaussian curvature of solid surfaces from pore-
space images [31]. Finally, it would be instructive to relate the con-
tact angle found using our proposed expression, Eq. (14), to macro-
scopic flow properties, such as relative permeability and capillary
pressure [24,22].
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