5,557 research outputs found
Self-organized criticality in the intermediate phase of rigidity percolation
Experimental results for covalent glasses have highlighted the existence of a
new self-organized phase due to the tendency of glass networks to minimize
internal stress. Recently, we have shown that an equilibrated self-organized
two-dimensional lattice-based model also possesses an intermediate phase in
which a percolating rigid cluster exists with a probability between zero and
one, depending on the average coordination of the network. In this paper, we
study the properties of this intermediate phase in more detail. We find that
microscopic perturbations, such as the addition or removal of a single bond,
can affect the rigidity of macroscopic regions of the network, in particular,
creating or destroying percolation. This, together with a power-law
distribution of rigid cluster sizes, suggests that the system is maintained in
a critical state on the rigid/floppy boundary throughout the intermediate
phase, a behavior similar to self-organized criticality, but, remarkably, in a
thermodynamically equilibrated state. The distinction between percolating and
non-percolating networks appears physically meaningless, even though the
percolating cluster, when it exists, takes up a finite fraction of the network.
We point out both similarities and differences between the intermediate phase
and the critical point of ordinary percolation models without
self-organization. Our results are consistent with an interpretation of recent
experiments on the pressure dependence of Raman frequencies in chalcogenide
glasses in terms of network homogeneity.Comment: 20 pages, 18 figure
Self-organization with equilibration: a model for the intermediate phase in rigidity percolation
Recent experimental results for covalent glasses suggest the existence of an
intermediate phase attributed to the self-organization of the glass network
resulting from the tendency to minimize its internal stress. However, the exact
nature of this experimentally measured phase remains unclear. We modify a
previously proposed model of self-organization by generating a uniform sampling
of stress-free networks. In our model, studied on a diluted triangular lattice,
an unusual intermediate phase appears, in which both rigid and floppy networks
have a chance to occur, a result also observed in a related model on a Bethe
lattice by Barre et al. [Phys. Rev. Lett. 94, 208701 (2005)]. Our results for
the bond-configurational entropy of self-organized networks, which turns out to
be only about 2% lower than that of random networks, suggest that a
self-organized intermediate phase could be common in systems near the rigidity
percolation threshold.Comment: 9 pages, 6 figure
Recommended from our members
Remarkable dynamics of nanoparticles in the urban atmosphere
Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that the adverse health effects of airborne particles may scale with the airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter particles emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m high. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and indicate a loss of nanoparticles from air aged during less turbulent conditions. These results suggest that nanoparticles are lost by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health
Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing
Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy
"Fishing na everybody business": women's work and gender relations in Sierra Leone's fisheries
While small-scale marine fisheries in many developing countries is "everybody’s business", a strong gendered division of labour sees production concentrated in the hands of male fishermen - while women - ‘fish mammies’ - invariably dominate the post-harvest processing and retailing sector. Consequently, the production bias of many fisheries management programmes has not only largely overlooked the critical role that fisherwomen play in the sector, but has also seen ‘fish mammies’ marginalised in terms of resource and training support. This paper employs a gender aware livelihoods framework to make the economic space occupied by women in the small-scale fisheries sector in Sierra Leone more ‘visible’, and highlights how their variegated access to different livelihood capitals and resources interact with gendered social norms and women’s reproductive work. We argue for more social and economic investments in women’s fish processing and reproductive work, so as to enable them to reconcile both roles more effectively
Random site dilution properties of frustrated magnets on a hierarchical lattice
We present a method to analyze magnetic properties of frustrated Ising spin
models on specific hierarchical lattices with random dilution. Disorder is
induced by dilution and geometrical frustration rather than randomness in the
internal couplings of the original Hamiltonian. The two-dimensional model
presented here possesses a macroscopic entropy at zero temperature in the large
size limit, very close to the Pauling estimate for spin-ice on pyrochlore
lattice, and a crossover towards a paramagnetic phase. The disorder due to
dilution is taken into account by considering a replicated version of the
recursion equations between partition functions at different lattice sizes. An
analysis at first order in replica number allows for a systematic
reorganization of the disorder configurations, leading to a recurrence scheme.
This method is numerically implemented to evaluate the thermodynamical
quantities such as specific heat and susceptibility in an external field.Comment: 26 pages, 11 figure
Computational study of structural and elastic properties of random AlGaInN alloys
In this work we present a detailed computational study of structural and
elastic properties of cubic AlGaInN alloys in the framework of Keating valence
force field model, for which we perform accurate parametrization based on state
of the art DFT calculations. When analyzing structural properties, we focus on
concentration dependence of lattice constant, as well as on the distribution of
the nearest and the next nearest neighbour distances. Where possible, we
compare our results with experiment and calculations performed within other
computational schemes. We also present a detailed study of elastic constants
for AlGaInN alloy over the whole concentration range. Moreover, we include
there accurate quadratic parametrization for the dependence of the alloy
elastic constants on the composition. Finally, we examine the sensitivity of
obtained results to computational procedures commonly employed in the Keating
model for studies of alloys
- …