23,353,648 research outputs found
Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption
Neutrinos interact only very weakly, so they are extremely penetrating.
However, the theoretical neutrino-nucleon interaction cross section rises with
energy such that, at energies above 40 TeV, neutrinos are expected to be
absorbed as they pass through the Earth. Experimentally, the cross section has
been measured only at the relatively low energies (below 400 GeV) available at
neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here
we report the first measurement of neutrino absorption in the Earth, using a
sample of 10,784 energetic upward-going neutrino-induced muons observed with
the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting
long paths through the Earth is attenuated compared to a reference sample that
follows shorter trajectories through the Earth. Using a fit to the
two-dimensional distribution of muon energy and zenith angle, we determine the
cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an
order of magnitude higher in energy than previous measurements. The measured
cross section is (stat.) (syst.)
times the prediction of the Standard Model \cite{CooperSarkar:2011pa},
consistent with the expectation for charged and neutral current interactions.
We do not observe a dramatic increase in the cross section, expected in some
speculative models, including those invoking new compact dimensions
\cite{AlvarezMuniz:2002ga} or the production of leptoquarks
\cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445
The gamma-ray burst monitor for Lobster-ISS
Lobster-ISS is an X-ray all-sky monitor experiment selected by ESA two years
ago for a Phase A study (now almost completed) for a future flight (2009)
aboard the Columbus Exposed Payload Facility of the International Space
Station. The main instrument, based on MCP optics with Lobster-eye geometry,
has an energy passband from 0.1 to 3.5 keV, an unprecedented daily sensitivity
of 2x10^{-12} erg cm^{-2}s$^{-1}, and it is capable to scan, during each orbit,
the entire sky with an angular resolution of 4--6 arcmin. This X-ray telescope
is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of
recognizing true GRBs from other transient events. In this paper we describe
the GRBM. In addition to the minimum requirement, the instrument proposed is
capable to roughly localize GRBs which occur in the Lobster FOV (162x22.5
degrees) and to significantly extend the scientific capabilities of the main
instrument for the study of GRBs and X-ray transients. The combination of the
two instruments will allow an unprecedented spectral coverage (from 0.1 up to
300/700 keV) for a sensitive study of the GRB prompt emission in the passband
where GRBs and X-Ray Flashes emit most of their energy. The low-energy spectral
band (0.1-10 keV) is of key importance for the study of the GRB environment and
the search of transient absorption and emission features from GRBs, both goals
being crucial for unveiling the GRB phenomenon. The entire energy band of
Lobster-ISS is not covered by either the Swift satellite or other GRB missions
foreseen in the next decade.Comment: 6 pages, 4 figures. Paper presented at the COSPAR 2004 General
Assembly (Paris), accepted for publication in Advances in Space Research in
June 2005 and available on-line at the Journal site
(http://www.sciencedirect.com/science/journal/02731177), section "Articles in
press
Quantum Brachistochrone for Mixed States
We present a general formalism based on the variational principle for finding
the time-optimal quantum evolution of mixed states governed by a master
equation, when the Hamiltonian and the Lindblad operators are subject to
certain constraints. The problem reduces to solving first a fundamental
equation (the {\it quantum brachistochrone}) for the Hamiltonian, which can be
written down once the constraints are specified, and then solving the
constraints and the master equation for the Lindblad and the density operators.
As an application of our formalism, we study a simple one-qubit model where the
optimal Lindblad operators control decoherence and can be simulated by a
tunable coupling with an ancillary qubit. It is found that the evolution
through mixed states can be more efficient than the unitary evolution between
given pure states. We also discuss the mixed state evolution as a finite time
unitary evolution of the system plus an environment followed by a single
measurement. For the simplest choice of the constraints, the optimal duration
time for the evolution is an exponentially decreasing function of the
environment's degrees of freedom.Comment: 8 pages, 3 figure
+ / / at ATLAS
The newest results from the ATLAS Collaboration for the production of a
top-quark pair in association with a or boson, and for the production
of four top quarks, are summarised in these proceedings. The measurements were
performed with 36.1 fb of proton-proton collision data from the Large
Hadron Collider at a centre-of-mass energy of 13 TeV.Comment: 7 pages, 3 figures, TOP2018 Conference Proceeding
T-T-T-That\u27s All, Folks!
The May 1996 Word Ways described the results of a National Public Radio competition of December 1995 in which listeners were challenged to write grammatical and understandable sentences containing the same word four or more times in succession. Some of the most interesting entries were based on repeated thats; this article summarizes them. Four thats is relatively easy, as achieved by the following strategy
CSM analyses of
We study the modifications of the amplitudes and cross sections of several
processes, especially , generated
by Higgs boson and top quark compositeness, in particular within the CSM
concept. We illustrate the observable differences that may appear between
various, CSM conserving or CSM violating, compositeness possibilities.Comment: 13 pages, 4 figure
- …