18 research outputs found

    EFFECTIVE TECHNIQUES IN ESP TEACHING AND LEARNING

    Get PDF

    A microscope for hard x rays based on parabolic compound refractive lenses

    No full text
    The filamentous fungus Paecylomices variotii was able to produce high levels of cell extract and extracellular invertases when grown under submerged fermentation (SbmF) and solid-state fermentation, using agroindustrial products or residues as substrates, mainly soy bran and wheat bran, at 40A degrees C for 72 h and 96 h, respectively. Addition of glucose or fructose (a parts per thousand yen1%; w/v) in SbmF inhibited enzyme production, while the addition of 1% (w/v) peptone as organic nitrogen source enhanced the production by 3.7-fold. However, 1% (w/v) (NH4)(2)HPO4 inhibited enzyme production around 80%. The extracellular form was purified until electrophoretic homogeneity (10.5-fold with 33% recovery) by DEAE-Fractogel and Sephacryl S-200 chromatography. The enzyme is a monomer with molecular mass of 102 kDa estimated by SDS-PAGE with carbohydrate content of 53.6%. Optima of temperature and pH for both, extracellular and cell extract invertases, were 60A degrees C and 4.0-4.5, respectively. Both invertases were stable for 1 h at 60A degrees C with half-lives of 10 min at 70A degrees C. Mg2+, Ba2+ and Mn2+ activated both extracellular and cell extract invertases from P. variotii. The kinetic parameters K-m and V-max for the purified extracellular enzyme corresponded to 2.5 mM and 481 U/mg prot(-1), respectively.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP

    Novel High-Power, High Repetition Rate Laser Diode Pump Modules Suitable for High-Energy Class Laser Facilities

    No full text
    The latest generation of high-energy-class pulsed laser facilities, under construction or planned, such as EuPRAXIA, require reliable pump sources with high power (many kW), brightness (>1 MW/cm2/sr) and electro-optical conversion efficiency (>50%). These new facilities will be operated at high repetition rates (around 100 Hz) and only diode lasers are capable of delivering the necessary performance. Commercial (quasi-continuous wave, QCW) diode laser pulse-pump sources are, however, constructed as low-cost passively cooled stacked arrays that are limited either in brightness, efficiency or repetition rate. Commercial continuous wave diode laser pumps constructed using microchannel coolers (as used in high-value industrial machine tools) can fulfil all requirements, but are typically not preferred, due to their cost and complexity and the challenges of preventing cooler degradation. A custom solution is shown here to fill this gap, using advanced diode lasers in a novel passive side-cooling geometry to realize 100 … 200 Hz pump modules (10%–20% duty cycle) that emit peak power of 6 kW at wavelength = 940 nm. The latest performance of these modules is summarized and compared to literature. We show that a brightness >1 MW/cm2/sr can be efficiently delivered across a wide range of laser pulse conditions with 10% duty cycle (pulse width: 100 µs … 100 ms … cw, repetition rate up to 1 kHz). Furthermore, we describe how these pumps have been used to construct and reliably operate (>109 pulses without degradation) in high-energy-class regenerative and ring amplifiers at the Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI). We also show first results on 100 Hz pumping of cryogenically cooled solid-state Yb:YAG slab amplifiers, as anticipated for use in the EuPRAXIA laser, and note that peak temperature is disproportionately increased, indicating that improved cooling and more detailed studies are needed
    corecore