11 research outputs found

    Combining Spatiotemporal Corridor Design for Reindeer Migration with Harvest Scheduling in Northern Sweden

    Get PDF
    Reindeer husbandry and commercial forestry seek to co-exist in the forests of Northern Sweden. As interwoven as the two industries are, conflicts have arisen. Forest practices have reduced the distribution of lichen, the main winter diet for reindeer. Forest practices have also increased forest density, compromising the animals’ ability to pass through forested areas on their migration routes. In an attempt to reduce impacts on reindeer husbandry, we present a spatially explicit harvest scheduling model that includes reindeer corridors with user-defined spatial characteristics. We illustrate the model in a case study and explore the relationship between timber revenues and the selection and maintenance of reindeer corridors. The corridors are not only to include sufficient lichen habitat, but they are also supposed to ensure access for reindeer by connecting lichen areas with linkages that allow unobstructed travel. Since harvest scheduling occurs over a planning horizon, the spatial configuration of corridors can change from one time period to the next in order to accommodate harvesting activities. Our results suggest that maintaining reindeer corridors in harvest scheduling can be done at minimal cost. Also, we conclude that including corridor constraints in the harvest scheduling model is critical to guarantee connectivity of reindeer pastures

    4pi Models of CMEs and ICMEs

    Full text link
    Coronal mass ejections (CMEs), which dynamically connect the solar surface to the far reaches of interplanetary space, represent a major anifestation of solar activity. They are not only of principal interest but also play a pivotal role in the context of space weather predictions. The steady improvement of both numerical methods and computational resources during recent years has allowed for the creation of increasingly realistic models of interplanetary CMEs (ICMEs), which can now be compared to high-quality observational data from various space-bound missions. This review discusses existing models of CMEs, characterizing them by scientific aim and scope, CME initiation method, and physical effects included, thereby stressing the importance of fully 3-D ('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication in Solar Physics (SUN-360 topical issue

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt

    Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness

    Get PDF
    Mice selected for aggressiveness (long and short attack latency mice; LALs and SALs, respectively) constitute a useful tool in studying the neural background of aggressive behavior, especially so as the SAL strain shows violent forms of aggressiveness that appear abnormal in many respects. By using c-Fos staining as a marker of neuronal activation, we show here that agonistic encounters result in different activation patterns in LAL and SAL mice. In LALs, agonistic encounters activated the lateral septum, bed nucleus of stria terminalis, medial amygdala, paraventricular nucleus of the hypothalamus, anterior hypothalamic nucleus and tuber cinereum area (both being analogous with the rat hypothalamic attack area), dorsolateral periaqueductal gray, and locus coeruleus. This pattern is similar with that seen in the territorial aggression of male mice, rats and hamsters, and non-lactating female mice. SALs showed strong fight-induced activations in the central amygdala and lateral/ventrolateral periaqueductal gray. In this strain, no activation was seen in the lateral septum and the dorsolateral periaqueductal gray. This pattern is similar with that seen in other models of violent aggression, e.g., in attacks induced by hypothalamic stimulation in rats, quiet biting in cats, lactating female mice, and hypoarousal-driven abnormal aggression in rats. We suggest here that the excessive activation of the central amygdala and lateral/ventrolateral periaqueductal gray-accompanied by a smaller activation of the septum and dorsolateral periaqueductal gray-underlay the expression of violent attacks under various circumstances.
    corecore