12 research outputs found
The synergistic antinociceptive interactions of endomorphin-1 with dexmedetomidine and/or S(+)-ketamine in rats
Spinal administration of the endogenous mu-opioid agonist peptide, endomorphin-1, results in antinociception in rodents, but there are few data about its interaction with other antinociceptive drugs. We investigated the antinociceptive interactions at the spinal level of endomorphin-1 with the N-methyl-D-aspartate antagonist S(+)-ketamine, the alpha2-adrenoceptor agonist dexmedetomidine, or both in awake rats. Nociception was assessed by the tail-flick test. Dose-response curves were determined for endomorphin-1 (0.6-50 microg), for dexmedetomidine (0.1-10 microg), for mixtures of S(+)-ketamine (30 or 100 microg) with endomorphin-1 (2-18 microg) or of endomorphin-1 with dexmedetomidine in a fixed ratio (4:1), and for the triple combination of the three drugs after intrathecal administration. Endomorphin-1 and dexmedetomidine both produced dose-dependent antinociception. The coadministration of 100 microg S(+)-ketamine significantly enhanced the antinociceptive effect of 6 microg endomorphin-1. Isobolographic analysis of the combinations of endomorphin-1 and dexmedetomidine revealed a synergistic interaction between these drugs. The 80% effective dose for the triple combination was significantly less than that for either binary combination. These data indicate that S(+)-ketamine and dexmedetomidine, acting via different receptors, produce synergistic antinociceptive interaction with endomorphin-1 at the spinal level. Furthermore, the triple combination of an opioid agonist, an alpha2-adrenoceptor agonist, and an N-methyl-D-aspartate receptor antagonist shows potent antinociceptive activity. IMPLICATIONS: The coadministration of the N-methyl-D-aspartate antagonist receptor antagonist, S(+)-ketamine, or the specific alpha2-adrenoceptor agonist, dexmedetomidine, significantly enhances the antinociceptive effect of the endogenous mu-opioid agonist, endomorphin-1, at the spinal level. The triple combination of the three drugs causes a further improved antinociception
Long-Term Follow-Up of a Family with Retinal Dystrophy Caused by RPE65 Mutation
We present here the case histories of two siblings, a boy and a girl, with Leber’s congenital amaurosis (LCA). The diagnosis was based on non-recordable full-field electroretinogram (ffERG). The long-term ophthalmologic follow-up included kinetic perimetry (Goldmann), visual evoked potentials with flash stimulation, optical coherence tomography (OCT: B-scan images at the area of fovea), and multifocal ERG. The boy (sibling 1, born in 1986) was sent for electrophysiological examination at the age of four because he had nystagmus from birth. The diagnosis would be LCA based on non-recordable ffERG. Four years later, his visual acuity decreased rapidly due to vitreous opacification, caused by the autoimmune reaction of the retinal pigment epithelial cells. This was treated successfully with steroid injections, administered parabulbarly. Retinal autoimmune panel was not performed. Genetic testing became available only in 2019, and it revealed a RPE65 gene mutation: (NM_000329.2) c.{442G>A};{442G>A} (p.{Glu148Lys}; {Glu148Lys}). His sister (sibling 2, born in 1993) showed similar symptoms, caused by the same genetic mutation. Even though their parents were free of symptoms, it appeared that they were heterozygous carriers of the same mutation. Research of the family tree revealed a consanguineous marriage four generations before. Both siblings received successful gene therapy relatively late in their age: sibling 1 was 35 and sibling 2 was 28 years old, meaning that they were at an advanced stage of the disease. Nevertheless, follow-up examinations showed measurable improvements in their retinal function. The study shows that electrophysiological examinations, including flash-evoked responses, are useful in the objective evaluation of the progression in the central photoreceptor loss during the follow-up of LCA. The results also show that gene therapy can have beneficial effects even at an advanced stage of the disease
How to not trade water for carbon with tree planting in water-limited temperate biomes?
The most widespread nature-based solution for mitigating climate change is tree planting. When realized as forest restoration in historically forested biomes, it can efficiently contribute to the sequestration of atmospheric carbon and can also entail significant biodiversity and ecosystem service benefits. Conversely, tree planting in naturally open biomes can have adverse effects, of which water shortage due to increased evapotranspiration is among the most alarming ones. Here we assessed how soil texture affects the strength of the trade-off between tree cover and water balance in the forest-steppe biome, where the global pressure for afforestation is threatening with increasing tree cover above historical levels. Here we monitored vertical soil moisture dynamics in four stands in each of the most common forest types of lowland Hungary on well-drained, sandy (natural poplar groves, and Robinia and pine plantations) and on poorly drained, silty-clayey soils (natural oak stands and Robinia plantations), and neighboring grasslands. We found that forests on sand retain moisture in the topsoil (approx. 20 cm) throughout the year, but a thick dry layer develops below that during the vegetation period, significantly impeding groundwater recharge. Neighboring sandy grasslands showed an opposite pattern, with often dry topsoil but intact moisture reserves below, allowing deep percolation. In contrast, forests on silty-clayey soils did not desiccate lower soil layers compared neighboring grasslands, which in turn showed moisture patterns similar to sandy grasslands. We conclude that, in water-limited temperate biomes where landscape-wide water regime depends on deep percolation, soil texture should drive the spatial allocation of tree-based climate mitigation efforts. On sand, the establishment of new forests should be kept to a minimum and grassland restoration should be preferred. The trade-off between water and carbon is less pronounced on silty-clayey soils, making forest patches and wooded rangelands viable targets for both climate mitigation and ecosystem restoration
How to not trade water for carbon with tree planting in water-limited temperate biomes?
The most widespread nature-based solution for mitigating climate change is tree planting. When realized as forest restoration in historically forested biomes, it can efficiently contribute to the sequestration of atmospheric carbon and can also entail significant biodiversity and ecosystem service benefits. Conversely, tree planting in naturally open biomes can have adverse effects, of which water shortage due to increased evapotranspiration is among the most alarming ones. Here we assessed how soil texture affects the strength of the trade-off between tree cover and water balance in the forest-steppe biome, where the global pressure for afforestation is threatening with increasing tree cover above historical levels. Here we monitored vertical soil moisture dynamics in four stands in each of the most common forest types of lowland Hungary on well-drained, sandy (natural poplar groves, and Robinia and pine plantations) and on poorly drained, silty-clayey soils (natural oak stands and Robinia plantations), and neighboring grasslands. We found that forests on sand retain moisture in the topsoil (approx. 20 cm) throughout the year, but a thick dry layer develops below that during the vegetation period, significantly impeding groundwater recharge. Neighboring sandy grasslands showed an opposite pattern, with often dry topsoil but intact moisture reserves below, allowing deep percolation. In contrast, forests on silty-clayey soils did not desiccate lower soil layers compared neighboring grasslands, which in turn showed moisture patterns similar to sandy grasslands. We conclude that, in water-limited temperate biomes where landscape-wide water regime depends on deep percolation, soil texture should drive the spatial allocation of tree-based climate mitigation efforts. On sand, the establishment of new forests should be kept to a minimum and grassland restoration should be preferred. The trade-off between water and carbon is less pronounced on silty-clayey soils, making forest patches and wooded rangelands viable targets for both climate mitigation and ecosystem restoration
Maintaining scattered trees to boost carbon stock in temperate pastures does not compromise overall pasture quality for the livestock
Scattered trees in wood-pastures represent outstanding conservation value by providing microhabitats for a variety of organisms. They also diversify ecosystem services by creating shade for livestock, and capturing and storing carbon. However, trees in wood-pastures are declining Europe-wide and an appropriate legal environment to maintain them is mostly lacking. Here we looked beyond the well-documented beneficial effects of trees and assessed potential ecosystem disservices, which may drive the controversial appreciation of trees. In a grazing exclusion experiment, we assessed the effect of trees on herbage production in wood-pastures from semiarid continental to humid montane areas in the temperate deciduous forest ecoregion, and found that trees have a suppressive effect throughout the year, although herbage nutritive value, as indicated by herbage nitrogen content, seems to be improved in spring. When we up-scaled the local ecosystem disservice on herbage yield to entire wood-pastures, the loss remained below 3%, which is lower than reported gains in livestock production due to free access to shade. Thus, the motivation for the under-appreciation of trees by land managers and decision makers may lie in that trees suppress herbage production, but the importance of this effects is offset by the magnitude of the beneficial services of trees. We recommend current wood-pasture stakeholders to revisit their attitude towards scattered trees and encourage tree planting campaigns and tree-based climate mitigation strategies to consider the protection of trees in wood-pastures and the establishment of young ones in currently open pastures up to traditionally low tree cover proportions, as livestock production is unlikely to be compromised by this action