1,374 research outputs found

    Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids

    Get PDF
    UiO-66-GO hybrids were obtained by hydrothermal synthesis of MOF UiO-66 (a Zr terephthalate) on graphite oxide (GO). These hybrids with appropriate texture and presence of nanosized MOF particles (in the ca. 30–100 nm range) have been used as fillers to prepare mixed matrix membranes (MMMs) with two different polymers, polysulfone (PSF) and polyimide (PI), as the matrixes, with contents varying between 0 and 32 wt%. The MMMs were applied to the separation of H2/CH4 and CO2/CH4 mixtures at different temperatures (35, 60 and 90 °C). Besides finding a good filler-polymer interaction, in the particular case of the hybrid filler, the barrier effect of the GO and the microporosity of the MOF dominated the separation properties of the MMMs. In all cases (different MMMs and separation mixtures) the effect of the temperature was to increase the permeability with a simultaneous decrease in the corresponding selectivity. In terms of permselectivity, the best H2/CH4 separation results were obtained (at 35 °C) with a PI based MMM containing only UiO-66 as filler (H2 permeability of 73 Barrer and H2/CH4 selectivity of 151), while a hybrid UiO-66-GO filler produced the best CO2/CH4 performance (CO2/CH4 selectivity value of 51 at 21 Barrer of CO2), also using a PI polymer

    Guest charges in an electrolyte: renormalized charge, long- and short-distance behavior of the electric potential and density profile

    Full text link
    We complement a recent exact study by L. Samaj on the properties of a guest charge QQ immersed in a two-dimensional electrolyte with charges +1/−1+1/-1. In particular, we are interested in the behavior of the density profiles and electric potential created by the charge and the electrolyte, and in the determination of the renormalized charge which is obtained from the long-distance asymptotics of the electric potential. In Samaj's previous work, exact results for arbitrary coulombic coupling β\beta were obtained for a system where all the charges are points, provided βQ<2\beta Q<2 and β<2\beta < 2. Here, we first focus on the mean field situation which we believe describes correctly the limit β→0\beta\to 0 but βQ\beta Q large. In this limit we can study the case when the guest charge is a hard disk and its charge is above the collapse value βQ>2\beta Q>2. We compare our results for the renormalized charge with the exact predictions and we test on a solid ground some conjectures of the previous study. Our study shows that the exact formulas obtained by Samaj for the renormalized charge are not valid for βQ>2\beta Q>2, contrary to a hypothesis put forward by Samaj. We also determine the short-distance asymptotics of the density profiles of the coions and counterions near the guest charge, for arbitrary coulombic coupling. We show that the coion density profile exhibit a change of behavior if the guest charge becomes large enough (βQ≥2−β\beta Q\geq 2-\beta). This is interpreted as a first step of the counterion condensation (for large coulombic coupling), the second step taking place at the usual Manning--Oosawa threshold βQ=2\beta Q=2

    Description beyond the mean field approximation of an electrolyte confined between two planar metallic electrodes

    Full text link
    We study an electrolyte confined in a slab of width WW composed of two grounded metallic parallel electrodes. We develop a description of this system in a low coupling regime beyond the mean field (Poisson--Boltzmann) approximation. There are two ways to model the metallic boundaries: as ideal conductors in which the electric potential is zero and it does not fluctuate, or as good conductors in which the average electric potential is zero but the thermal fluctuations of the potential are not zero. This latter model is more realistic. For the ideal conductor model we find that the disjoining pressure is positive behaves as 1/W31/W^3 for large separations with a prefactor that is universal, i.e. independent of the microscopic constitution of the system. For the good conductor boundaries the disjoining pressure is negative and it has an exponential decay for large WW. We also compute the density and electric potential profiles inside the electrolyte. These are the same in both models. If the electrolyte is charge asymmetric we find that the system is not locally neutral and that a non-zero potential difference builds up between any electrode and the interior of the system although both electrodes are grounded.Comment: 16 pages, 5 figures, added a new appendix B and a discussion on ideal conductors vs. good conductor

    Synthesis and gas adsorption properties of mesoporous silica-NH2-MIL-53(Al) core-shell spheres

    Get PDF
    Ordered mesoporous silica-NH2-MIL-53(Al) core-shell spheres of about 4 µm in diameter have been synthesized by seeding the corresponding mesoporous silica spheres (MSSs) with crystals of NH2-MIL-53(Al) and subsequent secondary crystal growth into a MOF shell. The morphology of the particles was analyzed by SEM, while TGA, EDX and XRD characterizations gave information on the composition and structure of this material and the activation of the MOF. N2 adsorption analysis revealed that the NH2-MIL-53(Al) shell controlled the access of guest molecules into the hydrophilic silica mesoporous structure, while the breathing behavior of the microporous NH2-MIL-53(Al) shell was confirmed by CO2 adsorption isotherms

    Materials Supply System Analysis Under Simulation Scenarios in a Lean Manufacturing Environment

    Get PDF
    AbstractIdentifying the most efficient supply system for a company working under Lean Manufacturing practices was possible with the support of this work. Promodel software was used to develop simulation model depicting a constant velocity joints (CVJ) production system, where two different supply methods were assessed. According to results herein obtained, better performance is achieved under random supply method in comparison with a clustering supply method. The company’s goal is to keep 1% losses due to lack of material. In the actual process, this essential parameter was reduced from 2.73% to 1.177%, if random supply method is properly implemented

    Tuning the separation properties of zeolitic imidazolate framework core-shell structures via post-synthetic modification

    Get PDF
    The conversion of ZIF-8 into ZIF-7 via post-synthetic modification with benzimidazole has been monitored by quantifying the liberated 2-methylimidazole by chromatography. The reaction kinetics have been adjusted to the shrinking core model, providing the diffusion coefficient of bIm inside the pores and the reaction kinetic constant (2.86 × 10-7 cm2 s-1 and 1.36 × 10-4 cm s-1, respectively). A wide variety of ZIF-7/8 hybrid core-shell frameworks have been obtained during this reaction. The most promising have been characterized by SEM/TEM, TGA, N2 and CO2 adsorption, FTIR and 13C NMR, showing features of the coexistence of both phases inside the frameworks. Their structures have also been simulated, providing comparable XRD and adsorption results. The hybrid material has been used as a filler for PBI mixed matrix membranes (MMMs) applied to H2/CO2 separation, enhancing the performances of the bare PBI polymer and MMMs containing ZIF-8 or ZIF-7 as a filler, with a maximum H2 permeability value of 1921 Barrer and a H2/CO2 selectivity of 11.8

    Artificial intelligence in wind speed forecasting: a review

    Get PDF
    Wind energy production has had accelerated growth in recent years, reaching an annual increase of 17% in 2021. Wind speed plays a crucial role in the stability required for power grid operation. However, wind intermittency makes accurate forecasting a complicated process. Implementing new technologies has allowed the development of hybrid models and techniques, improving wind speed forecasting accuracy. Additionally, statistical and artificial intelligence methods, especially artificial neural networks, have been applied to enhance the results. However, there is a concern about identifying the main factors influencing the forecasting process and providing a basis for estimation with artificial neural network models. This paper reviews and classifies the forecasting models used in recent years according to the input model type, the pre-processing and post-processing technique, the artificial neural network model, the prediction horizon, the steps ahead number, and the evaluation metric. The research results indicate that artificial neural network (ANN)-based models can provide accurate wind forecasting and essential information about the specific location of potential wind use for a power plant by understanding the future wind speed values

    Fabrication of ultrathin films containing the metal organic framework Fe-MIL-88B-NH2 by the Langmuir-Blodgett technique

    Get PDF
    In this work, the fabrication of ultrathin films containing the metal organic framework (MOF) Fe-MIL- 88B-NH2 by the Langmuir–Blodgett (LB) technique has been explored. MOF crystals of two different sizes (1.5 ± 0.3 and 0.07 ± 0.01 µm) have been synthesized and assembled at the air–liquid interface by the LB method. The effect of the subphase pH and particle size on the film formation process has been studied. Moreover, for the first time, mixed MOF+polymer (the commercial soluble polyimide Matrimid®) LB films containing different MOF loadings have been fabricated. These experiments show that it is possible to obtain ultrathin MOF + polymer films with a controlled MOF density. Furthermore, MOF particles are homogeneously distributed in the polymer matrix, even with very large amounts of MOF (up to 95 wt%). LB films have been incorporated into materials of different nature, including glass and mica substrates and also polymeric membranes based on polysulfone Udel® and PIM-1 (polymer of intrinsic microporosity), and the modification of water contact angle after LB film deposition has been analyzed

    Collective modes and correlations in one-component plasmas

    Full text link
    The static and time-dependent potential and surface charge correlations in a plasma with a boundary are computed for different shapes of the boundary. The case of a spheroidal or spherical one-component plasma is studied in detail because experimental results are available for such systems. Also, since there is some knowlegde both experimental and theoretical about the electrostatic collective modes of these plasmas, the time-dependent correlations are computed using a method involving these modes.Comment: 20 pages, plain TeX, submitted to Phys. Rev.

    Equation of state in the fugacity format for the two-dimensional Coulomb gas

    Full text link
    We derive the exact general form of the equation of state, in the fugacity format, for the two-dimensional Coulomb gas. Our results are valid in the conducting phase of the Coulomb gas, for temperatures above the Kosterlitz-Thouless transition. The derivation of the equation of state is based on the knowledge of the general form of the short-distance expansion of the correlation functions of the Coulomb gas. We explicitly compute the expansion up to order O(ζ6)O(\zeta^6) in the activity ζ\zeta. Our results are in very good agreement with Monte Carlo simulations at very low density
    • …
    corecore