2,026 research outputs found

    The International Linear Collider beam dumps

    Get PDF
    The ILC beam dumps are a key part of the accelerator design. At Snowmass 2005, the current status of the beam dump designs were reviewed, and the options for the overall dump layout considered. This paper describes the available dump options for the baseline and the alternatives and considers issues for the dumps that require resolution.Comment: Prepared for 2005 International Linear Collider Physics and Detector Workshop and 2nd ILC Accelerator Workshop, Snowmass, Colorado, 14-27 Aug 200

    Rydberg excitation of a single trapped ion

    Full text link
    We demonstrate excitation of a single trapped cold 40^{40}Ca+^+ ion to Rydberg levels by laser radiation in the vacuum-ultraviolet at 122 nm wavelength. Observed resonances are identified as 3d2^2D3/2_{3/2} to 51 F, 52 F and 3d2^2D5/2_{5/2} to 64F. We model the lineshape and our results imply a large state-dependent coupling to the trapping potential. Rydberg ions are of great interest for future applications in quantum computing and simulation, in which large dipolar interactions are combined with the superb experimental control offered by Paul traps.Comment: 4 pages, 3 figure

    Laser cooling of new atomic and molecular species with ultrafast pulses

    Full text link
    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR

    Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen

    Full text link
    Cooling antihydrogen atoms is important for future experiments both to test the fundamental CPT symmetry by high-resolution laser spectroscopy and also to measure the gravitational acceleration of antimatter. Laser-cooling of antihydrogen can be done on the strong 1S-2P transition at the wavelength of Lyman-alpha (121.6nm). A continuous-wave laser at the Lyman-alpha wavelength based on solid-state fundamental lasers is described. By using a two-photon and a near one photon resonance a scan across the whole phasematching curve of the four-wave mixing process is possible. Furthermore the influence of the beam profile of one fundamental beam on the four-wave mixing process is studied.Comment: 4 pages, 4 figure

    Integrated energy monitoring and visualization system for Smart Green City development: Designing a spatial information integrated energy monitoring model in the context of massive data management on a web based platform

    Get PDF
    U-Eco City is a research and development project initiated by the Korean government. The project's objective is the monitoring and visualization of aggregated and real time states of various energy usages represented by location-based sensor data accrued from city to building scale. The platform's middleware will retrieve geospatial data from a GIS database and sensor data from the individual sensory installed over the city and provide the browser-based client with the accommodated information suitable to display geo-location characteristics specific to the respective energy usage. The client will be capable of processing and displaying real time and aggregated data in different dimensions such as time, location, level of detail, mode of visualization, etc. The platform's middleware has been developed into an operative, advanced prototype, providing information to a Web-based client that integrates and interfaces with the Google Earth and Google Maps plug-ins for geospatially referenced energy usage visualization and monitoring

    Time-Domain Measurement of Broadband Coherent Cherenkov Radiation

    Full text link
    We report on further analysis of coherent microwave Cherenkov impulses emitted via the Askaryan mechanism from high-energy electromagnetic showers produced at the Stanford Linear Accelerator Center (SLAC). In this report, the time-domain based analysis of the measurements made with a broadband (nominally 1-18 GHz) log periodic dipole array antenna is described. The theory of a transmit-receive antenna system based on time-dependent effective height operator is summarized and applied to fully characterize the measurement antenna system and to reconstruct the electric field induced via the Askaryan process. The observed radiation intensity and phase as functions of frequency were found to agree with expectations from 0.75-11.5 GHz within experimental errors on the normalized electric field magnitude and the relative phase; 0.039 microV/MHz/TeV and 17 deg, respectively. This is the first time this agreement has been observed over such a broad bandwidth, and the first measurement of the relative phase variation of an Askaryan pulse. The importance of validation of the Askaryan mechanism is significant since it is viewed as the most promising way to detect cosmogenic neutrino fluxes at E > 10^15 eV.Comment: 10 pages, 9 figures, accepted by Phys. Rev.

    Stress condensation in crushed elastic manifolds

    Full text link
    We discuss an M-dimensional phantom elastic manifold of linear size L crushed into a small sphere of radius R << L in N-dimensional space. We investigate the low elastic energy states of 2-sheets (M=2) and 3-sheets (M=3) using analytic methods and lattice simulations. When N \geq 2M the curvature energy is uniformly distributed in the sheet and the strain energy is negligible. But when N=M+1 and M>1, both energies appear to be condensed into a network of narrow M-1 dimensional ridges. The ridges appear straight over distances comparable to the confining radius R.Comment: 4 pages, RevTeX + epsf, 4 figures, Submitted to Phys. Rev. Let

    Multi-objective constrained optimization for energy applications via tree ensembles

    Get PDF
    Energy systems optimization problems are complex due to strongly non-linear system behavior and multiple competing objectives, e.g. economic gain vs. environmental impact. Moreover, a large number of input variables and different variable types, e.g. continuous and categorical, are challenges commonly present in real-world applications. In some cases, proposed optimal solutions need to obey explicit input constraints related to physical properties or safety-critical operating conditions. This paper proposes a novel data-driven strategy using tree ensembles for constrained multi-objective optimization of black-box problems with heterogeneous variable spaces for which underlying system dynamics are either too complex to model or unknown. In an extensive case study comprised of synthetic benchmarks and relevant energy applications we demonstrate the competitive performance and sampling efficiency of the proposed algorithm compared to other state-of-the-art tools, making it a useful all-in-one solution for real-world applications with limited evaluation budgets

    High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition

    Full text link
    We have studied the electronic structure and charge ordering (Verwey) transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the enhanced probing depth and the use of different surface preparations we are able to distinguish surface and volume effects in the spectra. The pseudogap behavior of the intrinsic spectra and its temperature dependence give evidence for the existence of strongly bound small polarons consistent with both dc and optical conductivity. Together with other recent structural and theoretical results our findings support a picture in which the Verwey transition contains elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb interaction
    • …
    corecore