123 research outputs found

    Hitting the target: Mathematical attainment in children is related to interceptive timing ability

    Get PDF
    Interceptive timing (IntT) is a fundamental ability underpinning numerous actions (e.g. ball catching), but its development and relationship with other cognitive functions remains poorly understood. Piaget (1955) suggested that children need to learn the physical rules that govern their environment before they can represent abstract concepts such as number and time. Thus, learning how objects move in space and time may underpin the development of related abstract representations (i.e. mathematics). To test this hypothesis, we captured objective measures of IntT in 309 primary school children (4-11 years), alongside ‘general motor skill’ and ‘national standardized academic attainment’ scores. Bayesian estimation showed that IntT (but not general motor capability) uniquely predicted mathematical ability even after controlling for age, reading and writing attainment. This finding highlights that interceptive timing is distinct from other motor skills with specificity in predicting childhood mathematical ability independent of other forms of attainment and motor capability

    Catching a Ball at the Right Time and Place: Individual Factors Matter

    Get PDF
    Intercepting a moving object requires accurate spatio-temporal control. Several studies have investigated how the CNS copes with such a challenging task, focusing on the nature of the information used to extract target motion parameters and on the identification of general control strategies. In the present study we provide evidence that the right time and place of the collision is not univocally specified by the CNS for a given target motion; instead, different but equally successful solutions can be adopted by different subjects when task constraints are loose. We characterized arm kinematics of fourteen subjects and performed a detailed analysis on a subset of six subjects who showed comparable success rates when asked to catch a flying ball in three dimensional space. Balls were projected by an actuated launching apparatus in order to obtain different arrival flight time and height conditions. Inter-individual variability was observed in several kinematic parameters, such as wrist trajectory, wrist velocity profile, timing and spatial distribution of the impact point, upper limb posture, trunk motion, and submovement decomposition. Individual idiosyncratic behaviors were consistent across different ball flight time conditions and across two experimental sessions carried out at one year distance. These results highlight the importance of a systematic characterization of individual factors in the study of interceptive tasks

    Similarities between digits’ movements in grasping, touching and pushing

    Get PDF
    In order to find out whether the movements of single digits are controlled in a special way when grasping, we compared the movements of the digits when grasping an object with their movements in comparable single-digit tasks: pushing or lightly tapping the same object at the same place. The movements of the digits in grasping were very similar to the movements in the single-digit tasks. To determine to what extent the hand transport and grip formation in grasping emerges from a synchronised motion of individual digits, we combined movements of finger and thumb in the single-digit tasks to obtain hypothetical transport and grip components. We found a larger peak grip aperture earlier in the movement for the single-digit tasks. The timing of peak grip aperture depended in the same way on its size for all tasks. Furthermore, the deviations from a straight line of the transport component differed considerably between subjects, but were remarkably similar across tasks. These results support the idea that grasping should be regarded as consisting of moving the digits, rather than transporting the hand and shaping the grip

    Music Attenuates Excessive Visual Guidance of Skilled Reaching in Advanced but Not Mild Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) results in movement and sensory impairments that can be reduced by familiar music. At present, it is unclear whether the beneficial effects of music are limited to lessening the bradykinesia of whole body movement or whether beneficial effects also extend to skilled movements of PD subjects. This question was addressed in the present study in which control and PD subjects were given a skilled reaching task that was performed with and without accompanying preferred musical pieces. Eye movements and limb use were monitored with biomechanical measures and limb movements were additionally assessed using a previously described movement element scoring system. Preferred musical pieces did not lessen limb and hand movement impairments as assessed with either the biomechanical measures or movement element scoring. Nevertheless, the PD patients with more severe motor symptoms as assessed by Hoehn and Yahr (HY) scores displayed enhanced visual engagement of the target and this impairment was reduced during trials performed in association with accompanying preferred musical pieces. The results are discussed in relation to the idea that preferred musical pieces, although not generally beneficial in lessening skilled reaching impairments, may normalize the balance between visual and proprioceptive guidance of skilled reaching

    Grasping Kinematics from the Perspective of the Individual Digits: A Modelling Study

    Get PDF
    Grasping is a prototype of human motor coordination. Nevertheless, it is not known what determines the typical movement patterns of grasping. One way to approach this issue is by building models. We developed a model based on the movements of the individual digits. In our model the following objectives were taken into account for each digit: move smoothly to the preselected goal position on the object without hitting other surfaces, arrive at about the same time as the other digit and never move too far from the other digit. These objectives were implemented by regarding the tips of the digits as point masses with a spring between them, each attracted to its goal position and repelled from objects' surfaces. Their movements were damped. Using a single set of parameters, our model can reproduce a wider variety of experimental findings than any previous model of grasping. Apart from reproducing known effects (even the angles under which digits approach trapezoidal objects' surfaces, which no other model can explain), our model predicted that the increase in maximum grip aperture with object size should be greater for blocks than for cylinders. A survey of the literature shows that this is indeed how humans behave. The model can also adequately predict how single digit pointing movements are made. This supports the idea that grasping kinematics follow from the movements of the individual digits

    A three dimensional view of stereopsis in dentistry

    Get PDF
    Stereopsis and its role in dental practice has been a topic of debate in recent editions of this Journal. These discussions are particularly timely as they come at a point when virtual reality simulators are becoming increasingly popular in the education of tomorrow's dentists. The aim of this article is to discuss the lack of robust empirical evidence to ascertain the relationship (if any) between stereopsis and dentistry and to build a case for the need for further research to build a strong evidence base on the topic

    Temporal precision of interceptive action: differential effects of target size and speed

    No full text
    The duration of movements made to intercept moving targets decreases and movement speed increases when interception requires greater temporal precision. Changes in target size and target speed can have the same effect on required temporal precision, but the response to these changes differs: changes in target speed elicit larger changes in response speed. A possible explanation is that people attempt to strike the target in a central zone that does not vary much with variation in physical target size: the effective size of the target is relatively constant over changes in physical size. Three experiments are reported that test this idea. Participants performed two tasks: (1) strike a moving target with a bat moved perpendicular to the path of the target; (2) press on a force transducer when the target was in a location where it could be struck by the bat. Target speed was varied and target size held constant in experiment 1. Target speed and size were co-varied in experiment 2, keeping the required temporal precision constant. Target size was varied and target speed held constant in experiment 3 to give the same temporal precision as experiment 1. Duration of hitting movements decreased and maximum movement speed increased with increases in target speed and/or temporal precision requirements in all experiments. The effects were largest in experiment 1 and smallest in experiment 3. Analysis of a measure of effective target size (standard deviation of strike locations on the target) failed to support the hypothesis that performance differences could be explained in terms of effective size rather than actual physical size. In the pressing task, participants produced greater peak forces and shorter force pulses when the temporal precision required was greater, showing that the response to increasing temporal precision generalizes to different responses. It is concluded that target size and target speed have independent effects on performance
    corecore