46 research outputs found
Search for Optical Pulsation in M82 X-2
We report on a search for optical pulsation from M82 X-2 over a range of periods. M82 X-2 is an X-ray pulsar with a 1.37s average spin period and a 2.5 day sinusoidal modulation. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 inch Hale telescope at the Palomar Observatory. We performed H test and χ^2 statistical analysis. No significant optical pulsations were found in the wavelength range of 3000–11000 Å with a pulsation period between 1.36262 and 1.37462 s. We found an upper limit on pulsed emission in the 4000–8000 Å wavelength range to be fainter than ~20.5 mag_(AB) , corresponding to ~23 μJy
Search for Optical Pulsation in M82 X-2
We report on a search for optical pulsation from M82 X-2 over a range of periods. M82 X-2 is an X-ray pulsar with a 1.37s average spin period and a 2.5 day sinusoidal modulation. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 inch Hale telescope at the Palomar Observatory. We performed H test and χ^2 statistical analysis. No significant optical pulsations were found in the wavelength range of 3000–11000 Å with a pulsation period between 1.36262 and 1.37462 s. We found an upper limit on pulsed emission in the 4000–8000 Å wavelength range to be fainter than ~20.5 mag_(AB) , corresponding to ~23 μJy
Search for optical pulsations in PSR J0337+1715
We report on a search for optical pulsations from PSR J0337+1715 at its observed radio pulse period. PSR J0337+1715 is a millisecond pulsar (2.7 ms spin period) in a triple hierarchical system with two white dwarfs, and has a known optical counterpart with g-band magnitude 18. The observations were done with the ARray Camera for Optical to Near-IR Spectrophotometry at the 200 arcsec Hale telescope at Palomar Observatory. No significant pulsations were found in the range 4000–11 000 Å, and we can limit pulsed emission in g band to be fainter than 25 mag
SCExAO/MEC and CHARIS Discovery of a Low Mass, 6 AU-Separation Companion to HIP 109427 using Stochastic Speckle Discrimination and High-Contrast Spectroscopy
We report the direct imaging discovery of a low-mass companion to the nearby
accelerating A star, HIP 109427, with the Subaru Coronagraphic Extreme Adaptive
Optics (SCExAO) instrument coupled with the MKID Exoplanet Camera (MEC) and
CHARIS integral field spectrograph. CHARIS data reduced with reference star PSF
subtraction yield 1.1-2.4 m spectra. MEC reveals the companion in and
band at a comparable signal-to-noise ratio using stochastic speckle
discrimination, with no PSF subtraction techniques. Combined with complementary
follow-up photometry from Keck/NIRC2, the SCExAO data favors a
spectral type, effective temperature, and luminosity of M4-M5.5, 3000-3200 ,
and , respectively.
Relative astrometry of HIP 109427 B from SCExAO/CHARIS and Keck/NIRC2, and
complementary Gaia-Hipparcos absolute astrometry of the primary favor a
semimajor axis of au, an eccentricity of
, an inclination of degrees, and a
dynamical mass of . This work shows the
potential for extreme AO systems to utilize speckle statistics in addition to
widely-used post-processing methods to directly image faint companions to
nearby stars near the telescope diffraction limit.Comment: 13 pages, 7 figures, 3 table
The Evolution of Compact Binary Star Systems
We review the formation and evolution of compact binary stars consisting of
white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and
BHs are thought to be the primary astrophysical sources of gravitational waves
(GWs) within the frequency band of ground-based detectors, while compact
binaries of WDs are important sources of GWs at lower frequencies to be covered
by space interferometers (LISA). Major uncertainties in the current
understanding of properties of NSs and BHs most relevant to the GW studies are
discussed, including the treatment of the natal kicks which compact stellar
remnants acquire during the core collapse of massive stars and the common
envelope phase of binary evolution. We discuss the coalescence rates of binary
NSs and BHs and prospects for their detections, the formation and evolution of
binary WDs and their observational manifestations. Special attention is given
to AM CVn-stars -- compact binaries in which the Roche lobe is filled by
another WD or a low-mass partially degenerate helium-star, as these stars are
thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure