10 research outputs found

    The impact of nanosilver addition on element ions release form light-cured dental composite and compomer into 0.9% NaCl

    Get PDF
    The aim of this paper was to identify and to assess in semi-quantified way the release of different ions from composite and compomer restorative materials subjected to 0.9% NaCl solution, which simulates the environment of the human body. In the present study, the number of ions (Al, Ag, Ba, Sr, Ti) released from dental fillings over time (one week, one month and 3 months), in different temperatures (23掳C, 37掳C) and depending on the materials applied (unmodified/modified with nanosilver) was investigated. The results suggest that nanosilver addition influences directly on the process of metal ion releasing into 0.9% NaCl solution. The increase in the number of counts of metal ions was observed in the solutions in which samples modified with nanosilver were kept. Higher amount of metal ion release was observed for composite samples rather than for compomer materials. The study revealed that in general the number of released metal ions increases with the time of storage (for metal ions: Ti, Ba, Sr) and at higher temperature (Ag, Ti, Ba). Reverse tendency observed for silver ion release versus incubation time may be caused by the process of silver adsorption, which takes place on the surface of analyzed material and test-tube walls, where samples were incubated

    The Elemental Profile of Beer Available on Polish Market: Analysis of the Potential Impact of Type of Packaging Material and Risk Assessment of Consumption

    No full text
    Twenty-five elements, including the most essential and toxic metals, were determined in fifty beer samples stored in cans and bottles by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) and Cold Vapor Atomic Absorption Spectroscopy (CVAAS) techniques. The packaging material was analyzed using the Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS) technique. The control of the level of individual metals is necessary, not only to maintain the organoleptic properties of the product, but also to fulfill the standards regarding the permissible maximum concentrations. Metals can originate from different sources, including the brewing water, malt grains, hops, adjuncts, fruits, and spices. They may also come from contamination from the brewery equipment, i.e., vessels and tanks, including beer packing, storing and transporting (kegs, casks, cans). Discriminant analysis revealed that the differentiation of three types of beer (Lager, Ale, Craft) was possible, based on elemental concentrations, for the reduced data set after their selection using the Kruskal-Wallis test. The analysis of the impact of the packaging material (can or bottle) proved that when this parameter was used as a differentiating criterion, the difference in the content of Na, Al, Cu and Mn can be indicated. The risk assessment analysis showed that the consumption of beer in a moderate quantity did not have any adverse effect in terms of the selected element concentrations, besides Al. However, in the case of Al, the risk related to consumption can be considered, but only for the beer stored in cans produced from aluminum

    Characteristics of Hybrid Pigments Made from Alizarin Dye on a Mixed Oxide Host

    No full text
    This paper describes the fabrication of a new hybrid pigment made from 1,2-dihydroxyanthraquinone (alizarin) on a mixed oxide host (aluminum-magnesium hydroxycarbonate, LH). Various tools were applied to better understand the interactions between the organic (alizarin) and inorganic (LH) components, including ion mass spectroscopy (TOF-SIMS), 27-Aluminm solid-state nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), and thermogravimetric analysis (TGA). TOF-SIMS showed that modification of the LH had been successful and revealed the presence of characteristic ions C14H7O4Mg+ and C14H6O5Al−, suggesting interactions between the organic chromophore and both metal ions present in the mixed oxide host. Interactions were also observed between Al3+ ions and Alizarin molecules in 27Al NMR spectra, with a chemical shift detected in the case of the modified LH matrix. Any changes in color following reactions with Mg2+ and Al3+ ions were observed. Some of the physicochemical properties of alizarin, such as resistance to dissolution and color stability at elevated temperatures, were improved in comparison to the pure dye. This effect can be attributed to strong dye-LH interactions and the effective transformation of alizarin into an insoluble form. Moreover, the pigments exhibited higher thermal resistance and greater color stability in comparison to commercially available alizarin lakes (Alizarin Crimson)

    Golden and Silver–Golden Chitosan Hydrogels and Fabrics Modified with Golden Chitosan Hydrogels

    No full text
    Golden and silver–golden chitosan hydrogels and hydrogel-modified textiles of potential biomedical applications are investigated in this work. The hydrogels are formed by reactions of chitosan with HAuCl4·xH2O. For above the critical concentration of chitosan (c*), chitosan–Au hydrogels were prepared. For chitosan concentrations lower than c*, chitosan–Au nano- and microgels were formed. To characterise chitosan–Au structures, sol–gel analysis, UV–Vis spectrophotometry and dynamic light scattering were performed. Au concentration in the hydrogels was determined by the flame atomic absorption spectrophotometry. Colloidal chitosan–Au solutions were used for the modification of fabrics. The Au content in the modified fabrics was quantified by inductively coupled plasma mass spectrometry technique. Scanning electron microscopy with energy dispersion X-ray spectrometer was used to analyse the samples. Reflectance spectrophotometry was applied to examine the colour of the fabrics. The formation of chitosan–Au–Ag hydrogels by the competitive reaction of Au and Ag ions with the chitosan macromolecules is reported

    Can TPO as Photoinitiator Replace “Golden Mean” Camphorquinone and Tertiary Amines in Dental Composites? Testing Experimental Composites Containing Different Concentration of Diphenyl(2,4,6-trimethylbenzoyl)phosphine Oxide

    No full text
    The aim of this research was to compare the biomechanical properties of experimental composites containing a classic photoinitiating system (camphorquinone and 2-(dimethylami-no)ethyl methacrylate) or diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO) as a photoinitiator. The produced light-cured composites consisted of an organic matrix-Bis-GMA (60 wt.%), TEGDMA (40 wt.%) and silanized silica filler (45 wt.%). Composites contained 0.27; 0.5; 0.75 or 1 wt.% TPO. Vickers hardness, microhardness (in the nanoindentation test), diametral tensile strength, resistance to three-point bending and the CIE L* a* b* colorimetric analysis was performed with each composite produced. The highest average Vickers hardness values were obtained for the composite containing 1 wt.% TPO (43.18 ± 1.7HV). The diametral tensile strength remains on regardless of the type and amount of photoinitiator statistically the same level, except for the composite containing 0.5 wt.% TPO for which DTS = 22.70 ± 4.7 MPa and is the lowest recorded value. The highest average diametral tensile strength was obtained for the composite containing 0.75 wt.% TPO (29.73 ± 4.8 MPa). The highest modulus of elasticity characterized the composite containing 0.75 wt.% TPO (5383.33 ± 1067.1 MPa). Composite containing 0.75 wt.% TPO has optimal results in terms of Vickers hardness, diametral tensile strength, flexural strength and modulus of elasticity. Moreover, these results are better than the parameters characterizing the composite containing the CQ/DMAEMA system. In terms of an aesthetic composite containing 0.75 wt.%. TPO is less yellow in color than the composite containing CQ/DMAEMA. This conclusion was objectively confirmed by test CIE L* a* b*

    Zinc Coordination Compounds with Benzimidazole Derivatives: Synthesis, Structure, Antimicrobial Activity and Potential Anticancer Application

    No full text
    Developing new, smart drugs with the anticancer activity is crucial, especially for cancers, which cause the highest mortality in humans. In this paper we describe a series of coordination compounds with the element of health, zinc, and bioactive ligands, benzimidazole derivatives. By way of synthesis we have obtained four compounds named C1, C2, C4 and C4. Analytical analyses (elemental analysis (EA), flame atomic absorption spectrometry (FAAS)), spectroscopic (Fourier transform infrared spectroscopy (FT-IR), mass spectrometry (MS)) and thermogravimetric (TG) methods and the definition of crystal structures were used to explore the nature of bonding and to elucidate the chemical structures. The collected analytical data allowed the determination of the stoichiometry in coordination compounds, thermal stability, crystal structure and way of bonding. The cytotoxicity effect of the new compounds as a potential antitumor agent on the glioblastoma (T98G), neuroblastoma (SK-N-AS) and lung adenocarcinoma (A549) cell lines and human normal skin fibroblasts (CCD-1059Sk) was also determined. Cell viability was determined by the MTT assay. The results obtained confirmed that conversion of ligands into the respective metal complexes significantly improved their anticancer properties. The complexes were screened for antibacterial and antifungal activities. The ADME technique was used to determine the physicochemical and biological properties

    Assessment of the Authenticity of Whisky Samples Based on the Multi-Elemental and Multivariate Analysis

    No full text
    Two hundred and five samples of whisky, including 170 authentic and 35 fake products, were analyzed in terms of their elemental profiles in order to distinguish them according to the parameter of their authenticity. The study of 31 elements (Ag, Al, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Tl, U, V, Ca, Fe, K, Mg, P, S, Ti and Zn) was performed using the Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) and Cold Vapor-Atomic Absorption (CVAAS) techniques. Additionally, the pH values of all samples were determined by pH-meter, and their isotopic ratios of 88Sr/86Sr, 84Sr/86Sr, 87Sr/86Sr and 63Cu/65Cu were assessed, based on the number of counts by ICP-MS. As a result of conducted research, elements, such as Mn, K, P and S, were identified as markers of whisky adulteration related to the age of alcohol. The concentrations of manganese, potassium and phosphorus were significantly lower in the fake samples (which were not aged, or the aging period was much shorter than legally required), compared to the original samples (in all cases subjected to the aging process). The observed differences were related to the migration of these elements from wooden barrels to the alcohol contained in them. On the other hand, the sulfur concentration in the processed samples was much higher in the counterfeit samples than in the authentic ones. The total sulfur content, such as that of alkyl sulfides, decreases in alcohol with aging in the barrels. Furthermore, counterfeit samples can be of variable origin and composition, so they cannot be characterized as one group with identical or comparable features. Repeatedly, the element of randomness dominates in the production of these kinds of alcohols. However, as indicated in this work, the extensive elemental analysis supported by statistical tools can be helpful, especially in the context of detecting age-related adulteration of whisky. The results presented in this paper are the final part of a comprehensive study on the influence of selected factors on the elemental composition of whisky
    corecore