582 research outputs found

    Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences

    Get PDF
    PMCID: PMC3566971This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Physicochemical and Biological Investigation of Different Structures of Carbon Coatings Deposited onto Polyurethane

    No full text
    The aim of this study was to examine the thrombogenic properties of polyurethane that was surface modified with carbon coatings. Physicochemical properties of manufactured coatings were investigated using transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), Raman spectroscopy and contact angle measurement methods. Samples were examined by the Impact-R method evaluating the level of platelets activation and adhesion of particular blood cell elements. The analysis of antimicrobial resistance against E. coli colonization and viability of endothelial cells showed that polyurethane modified with use of carbon layers constituted an interesting solution for biomedical application

    Adhesion of E. coli Bacteria Cells to Prosthodontic Alloys Surfaces Modified by TiO2 Sol-Gel Coatings

    No full text
    The evaluation of the degree of bacteria E. coli adhesion to modified surfaces of the chosen prosthodontic alloys was presented. The study was carried out on Co-Cr (Wironit), Ni-Cr (Fantocer), and Fe-Cr-Ni (Magnum AN) alloys. Bare substrate as a control and titanium dioxide coated samples were used. The samples were placed for 24 hours in bacterial culture medium. After incubation period, a number of bacterial cells were evaluated by scanning electron microscope. The study revealed that modification of the alloy surfaces by titanium dioxide coating significantly decreases the amount of bacteria adhering to the surfaces and that additionally bare metal alloy substrates have a different degree of susceptibility to bacterial adhesion

    Tribological Characteristics of a-C:H:Si and a-C:H:SiOx Coatings Tested in Simulated Body Fluid and Protein Environment

    No full text
    This paper presents the tribological properties of silicon and oxygen incorporated diamond-like carbon coatings tested in simulated body fluid and bovine serum albumin environments. The tests were performed using a ball-on-disc tribometer with an AISI316L steel counterbody. The wear tracks and wear scars were analyzed using optical microscopy and a nanoindenter. The interaction between the coating and the working environment was analyzed by Fourier transform infrared spectroscopy, whereas changes in the chemical structure before and after the tribological tests were compared with the use of Raman spectroscopy. Our study showed that the tribological parameters are governed by the presence of oxygen rather than the changing concentration of silicon. Both of the spectroscopy results confirm this statement, indicating that coatings with low concentrations of silicon and oxygen appear to be better candidates for biological applications in terms of wear resistance

    A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene

    No full text
    Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor)

    CREATION OF A 3D STRUCTURE BASED ON THE HIGH STRENGTH METALLURGICAL GRAPHENE®

    No full text
    Herein, the results of a study focused on graphene in activation and cross-linking reactions with hydrazine are reported. The method provides an approach to the preparation of graphene-based materials, in this case, with a preset distance between individual layer and a relatively low ratio between the Raman G and D bands — D peak intensity/G peak intensity (ID/IG), ca. 1.81 (for unmodified High Strength Metallurgical Graphene® (HSMG® [Trade mark number: 013391669; Office for Harmonization in the Internal Market]), this ratio is 0.16). A 3D structure was created without a substrate (e.g. Si, SiO2 or polymer). This method allows for the preparation of a 3D graphene structure without the π–π interactions between individual layers
    corecore