6 research outputs found

    Willingness to Pay for Genetic Testing for Alzheimer's Disease: A Measure of Personal Utility

    Full text link
    Background: The increased availability of genetic tests for common, complex diseases, such as Alzheimer's disease (AD), raises questions about what people are willing to pay for these services. Methods: We studied willingness-to-pay for genetic testing in a study of AD risk assessment that included APOE genotype disclosure among 276 first-degree relatives of persons with AD. Results: Seventy-one percent reported that they would ask for such testing from their doctor if it were covered by health insurance, and 60% would ask for it even if it required self-pay. Forty-one percent were willing to pay more than $100 for testing, and more than half would have been willing to pay for the test out of pocket. Participants who learned that they were APOE -4 positive and those who had higher education were less likely to want testing if covered by insurance, possibly to avoid discrimination. Conclusion: This is the first report to examine willingness to pay for susceptibility genetic testing in a sample of participants who had actually undergone such testing. These findings reveal that some participants find valuable personal utility in genetic risk information even when such information does not have proven clinical utility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90504/1/gtmb-2E2011-2E0028.pd

    Cadherin-26 (CDH26) regulates airway epithelial cell cytoskeletal structure and polarity

    Get PDF
    Abstract Polarization of the airway epithelial cells (AECs) in the airway lumen is critical to the proper function of the mucociliary escalator and maintenance of lung health, but the cellular requirements for polarization of AECs are poorly understood. Using human AECs and cell lines, we demonstrate that cadherin-26 (CDH26) is abundantly expressed in differentiated AECs, localizes to the cell apices near ciliary membranes, and has functional cadherin domains with homotypic binding. We find a unique and non-redundant role for CDH26, previously uncharacterized in AECs, in regulation of cell–cell contact and cell integrity through maintaining cytoskeletal structures. Overexpression of CDH26 in cells with a fibroblastoid phenotype increases contact inhibition and promotes monolayer formation and cortical actin structures. CDH26 expression is also important for localization of planar cell polarity proteins. Knockdown of CDH26 in AECs results in loss of cortical actin and disruption of CRB3 and other proteins associated with apical polarity. Together, our findings uncover previously unrecognized functions for CDH26 in the maintenance of actin cytoskeleton and apicobasal polarity of AECs

    Targeting the Hippo pathway in cancer, fibrosis, wound healing and regenerative medicine

    No full text
    corecore