62 research outputs found

    Griffiths-Like Phase in Nanocrystalline Manganite La 0.85 Ca 0.15 MnO 3

    Get PDF
    The ferromagnetic Curie temperatures TC derived from a temperature derivative of AC susceptibility are equal to 106 K and 161 K for the nanocrystalline and polycrystalline manganites, respectively. The magnetic susceptibility and electron spin resonance confirm that the Griffiths-like phase exists above the Curie temperature in paramagnetic matrix of the nanocrystalline manganite. An analysis of electron spin resonance spectra allows to detect the upper temperature limit for an existence of Griffiths-like phase at temperature TGI = 290 K, which is somewhat higher than the TG of the magnetic susceptibility

    Preparation of WS2-PMMA composite films for optical applications

    Get PDF
    C. B. acknowledges the German research foundation DFG under Emmy-Noether grant BA4856/2-1. C. B., J. Z. and M. C. G. acknowledge the Volkswagen foundation under grant agreement no. 93404-93406. W. J. B. gratefully acknowledges support by a research grant from Science Foundation Ireland (SFI) under Grant Number 12/IA/1306.Thus far, research activities of 2D materials in optics, photonics and optoelectronics predominantly focus on micromechanically cleaved or grown nanosheets. Here, we show that high quality liquid-exfoliated nanosheets offer an alternative approach. Starting from well-defined, monolayer rich WS2 dispersions obtained after liquid exfoliation and size selection in aqueous surfactant, we present an optimised protocol facilitating transfer of the nanosheets to a polymer solution in organic media. From such dispersions, we fabricate WS2–polymer thin films by spin coating. The characteristic photoluminescence of WS2 monolayers is retained in the film at 2.04 eV without broadening (line width 40 meV) or significant changes in the line-shape. This confirms that nanosheet aggregation is efficiently prevented on transfer and deposition. The films are extremely smooth and uniform over large areas with a root mean square roughness <0.5 nm. To demonstrate the potential in optical applications, the nonlinear optical response was studied, revealing promise as optical limiter. In addition, we show that the photoluminescence can be manipulated by coupling the exciton response to cavity photons in a Ag microcavity.PostprintPeer reviewe

    Speciation, Luminescence, and Alkaline Fluorescence Quenching of 4-(2-methylbutyl)aminodipicolinic acid (H2MEBADPA)

    Get PDF
    4-(2-Methylbutyl)aminodipicolinic acid (H2MEBADPA) has been synthesized and fully characterized in terms of aqueous phase protonation constants (pKa\u27s) and photophysical measurements. The pKa\u27s were determined by spectrophotometric titrations, utilizing a fully sealed titration system. Photophysical measurements consisted of room temperature fluorescence and frozen solution phosphorescence as well as quantum yield determinations at various pH, which showed that only fully deprotonated MEBADPA2– is appreciably emissive. The fluorescence of MEBADPA2– has been determined to be quenched by hydroxide and methoxide anions, most likely through base-catalyzed excited-state tautomerism or proton transfer. This quenching phenomenon has been quantitatively explored through steady-state and time-resolved fluorescence measurements. Utilizing the determined pKas and quenching constants, the fluorescent intensity of MEBADPA2– has been successfully modeled as a function of pH
    corecore