141 research outputs found

    Dust evolution and satellitesimal formation in circumplanetary disks

    Full text link
    It is believed that satellites of giant planets form in circumplanetary disks. Many of the previous contributions assumed that their formation process proceeds similarly to rocky planet formation, via accretion of the satellite seeds, called satellitesimals. However, the satellitesimal formation itself poses a nontrivial problem as the dust evolution in the circumplanetary disk is heavily impacted by fast radial drift and thus dust growth to satellitesimals is hindered. To address this problem, we connected state-of-the-art hydrodynamical simulations of a circumplanetary disk around a Jupiter-mass planet with dust growth and drift model in a post-processing step. We found that there is an efficient pathway to satellitesimal formation if there is a dust trap forming within the disk. Thanks to the natural existence of an outward gas flow region in the hydrodynamical simulation, a significant dust trap arises at the radial distance of 85~RJ_{\rm J} from the planet, where the dust-to-gas ratio becomes high enough to trigger streaming instability. The streaming instability leads to the efficient formation of the satellite seeds. Because of the constant infall of material from the circumstellar disk and the very short timescale of dust evolution, the circumplanetary disk acts as a satellitesimal factory, constantly processing the infalling dust to pebbles that gather in the dust trap and undergo the streaming instability.Comment: Accepted for publication in ApJ. Revised version addressing comments from referee and communit

    Thermodynamics of Giant Planet Formation: Shocking Hot Surfaces on Circumplanetary Disks

    Full text link
    The luminosity of young giant planets can inform about their formation and accretion history. The directly imaged planets detected so far are consistent with the "hot-start" scenario of high entropy and luminosity. If nebular gas passes through a shock front before being accreted into a protoplanet, the entropy can be substantially altered. To investigate this, we present high resolution, 3D radiative hydrodynamic simulations of accreting giant planets. The accreted gas is found to fall with supersonic speed in the gap from the circumstellar disk's upper layers onto the surface of the circumplanetary disk and polar region of the protoplanet. There it shocks, creating an extended hot supercritical shock surface. This shock front is optically thick, therefore, it can conceal the planet's intrinsic luminosity beneath. The gas in the vertical influx has high entropy which when passing through the shock front decreases significantly while the gas becomes part of the disk and protoplanet. This shows that circumplanetary disks play a key role in regulating a planet's thermodynamic state. Our simulations furthermore indicate that around the shock surface extended regions of atomic - sometimes ionized - hydrogen develop. Therefore circumplanetary disk shock surfaces could influence significantly the observational appearance of forming gas-giants.Comment: 5 pages, 3 figures, 1 table, accepted for publication at MNRAS Letter

    Circumplanetary disks around young giant planets: a comparison between core-accretion and disk instability

    Full text link
    Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks are hot, with temperatures even greater than 1000 K when embedded in massive, optically thick protoplanetary disks. We explain how this difference can be understood as the natural result of the different formation mechanisms. We argue that the different temperatures should persist up to the point when a full-fledged gas giant forms via disk instability, hence our result provides a convenient criteria for observations to distinguish between the two main formation scenarios by measuring the bulk temperature in the planet vicinity.Comment: 12 pages, 9 figures, 1 table, accepted for publication at MNRA

    Planet heating prevents inward migration of planetary cores

    Get PDF
    Planetary systems are born in the disks of gas, dust and rocky fragments that surround newly formed stars. Solid content assembles into ever-larger rocky fragments that eventually become planetary embryos. These then continue their growth by accreting leftover material in the disc. Concurrently, tidal effects in the disc cause a radial drift in the embryo orbits, a process known as migration. Fast inward migration is predicted by theory for embryos smaller than three to five Earth masses. With only inward migration, these embryos can only rarely become giant planets located at Earth's distance from the Sun and beyond, in contrast with observations. Here we report that asymmetries in the temperature rise associated with accreting infalling material produce a force (which gives rise to an effect that we call "heating torque") that counteracts inward migration. This provides a channel for the formation of giant planets and also explains the strong planet-metallicity correlation found between the incidence of giant planets and the heavy-element abundance of the host stars.Comment: 19 pages, 4 figure
    • …
    corecore