86 research outputs found

    Loan Workouts, Superfund, and Lender Liability: De Minimis Settlements - the Magic Bullet ?

    Get PDF
    This article will focus on whether there is a practical solution for reconciling this clash between creditors\u27 rights and environmental liability. In an effort to provide a tangible basis for critical analysis, the following hypothetical situation will be employed throughout this article. This hypothetical is intended to demonstrate a generic two party loan situation. Although this model may be an oversimplification, its basic assumptions adequately provide the basis for analysis

    Algérie — Une histoire de haine et d’amour

    Get PDF

    Regulation of the methanogenesis pathways by hydrogen at transcriptomic level in time

    Get PDF
    The biomethane formation from 4 H-2 + CO2 by pure cultures of two methanogens, Methanocaldococcus fervens and Methanobacterium thermophilum, has been studied. The goal of the study was to understand the regulation of the enzymatic steps associated with biomethane biosynthesis by H-2, using metagenomic, pan-genomic, and transcriptomic approaches. Methanogenesis in the autotrophic methanogen M. fervens could be easily "switched off" and "switched on" by H-2/CO2 within about an hour. In contrast, the heterotrophic methanogen M. thermophilum was practically insensitive to the addition of the H-2/CO2 trigger although this methanogen also converted H-2/CO2 to CH4. From practical points of view, the regulatory function of H-2/CO2 suggests that in the power-to-gas (P2G) renewable excess electricity conversion and storage systems, the composition of the biomethane-generating methanogenic community is essential for sustainable operation. In addition to managing the specific hydrogenotrophic methanogenesis biochemistry, H-2/CO2 affected several, apparently unrelated, metabolic pathways. The redox-regulated overall biochemistry and symbiotic relationships in the methanogenic communities should be explored in order to make the P2G technology more efficient

    Inter-kingdom interactions and stability of methanogens revealed by machine-learning guided multi-omics analysis of industrial-scale biogas plants

    Get PDF
    Multi-omics analysis is a powerful tool for the detection and study of inter-kingdom interactions, such as those between bacterial and archaeal members of complex biogas-producing microbial communities. In the present study, the microbiomes of three industrial-scale biogas digesters, each fed with different substrates, were analysed using a machine-learning guided genome-centric metagenomics framework complemented with metatranscriptome data. This data permitted us to elucidate the relationship between abundant core methanogenic communities and their syntrophic bacterial partners. In total, we detected 297 high-quality, non-redundant metagenome-assembled genomes (nrMAGs). Moreover, the assembled 16 S rRNA gene profiles of these nrMAGs showed that the phylum Firmicutes possessed the highest copy number, while the representatives of the archaeal domain had the lowest. Further investigation of the three anaerobic microbial communities showed characteristic alterations over time but remained specific to each industrial-scale biogas plant. The relative abundance of various microorganisms as revealed by metagenome data was independent from corresponding metatranscriptome activity data. Archaea showed considerably higher activity than was expected from their abundance. We detected 51 nrMAGs that were present in all three biogas plant microbiomes with different abundances. The core microbiome correlated with the main chemical fermentation parameters, and no individual parameter emerged as a predominant shaper of community composition. Various interspecies H 2 /electron transfer mechanisms were assigned to hydrogenotrophic methanogens in the biogas plants that ran on agricultural biomass and wastewater. Analysis of metatranscriptome data revealed that methanogenesis pathways were the most active of all main metabolic pathways

    Bioelectrochemical Systems (BES) for Biomethane Production-Review

    Get PDF
    Bioelectrochemical systems (BESs) have great potential in renewable energy production technologies. BES can generate electricity via Microbial Fuel Cell (MFC) or use electric current to synthesize valuable commodities in Microbial Electrolysis Cells (MECs). Various reactor configurations and operational protocols are increasing rapidly, although industrial-scale operation still faces difficulties. This article reviews the recent BES related to literature, with special attention to electrosynthesis and the most promising reactor configurations. We also attempted to clarify the numerous definitions proposed for BESs. The main components of BES are highlighted. Although the comparison of the various fermentation systems is, we collected useful and generally applicable operational parameters to be used for comparative studies. A brief overview links the appropriate microbes to the optimal reactor design

    Development of Stable Mixed Microbiota for High Yield Power to Methane Conversion

    Get PDF
    The performance of a mixed microbial community was tested in lab-scale power-to-methane reactors at 55 °C. The main aim was to uncover the responses of the community to starvation and stoichiometric H2/CO2 supply as the sole substrate. Fed-batch reactors were inoculated with the fermentation effluent of a thermophilic biogas plant. Various volumes of pure H2/CO2 gas mixtures were injected into the headspace daily and the process parameters were followed. Gas volumes and composition were measured by gas-chromatography, the headspace was replaced with N2 prior to the daily H2/CO2 injection. Total DNA samples, collected at the beginning and end (day 71), were analyzed by metagenome sequencing. Low levels of H2 triggered immediate CH4 evolution utilizing CO2/HCO3− dissolved in the fermentation effluent. Biomethanation continued when H2/CO2 was supplied. On the contrary, biomethane formation was inhibited at higher initial H2 doses and concomitant acetate formation indicated homoacetogenesis. Biomethane production started upon daily delivery of stoichiometric H2/CO2. The fed-batch operational mode allowed high H2 injection and consumption rates albeit intermittent operation conditions. Methane was enriched up to 95% CH4 content and the H2 consumption rate attained a remarkable 1000 mL·L−1·d−1. The microbial community spontaneously selected the genus Methanothermobacter in the enriched cultures

    Regulation of the methanogenesis pathways by hydrogen at transcriptomic level in time

    Get PDF
    The biomethane formation from 4 H-2 + CO2 by pure cultures of two methanogens, Methanocaldococcus fervens and Methanobacterium thermophilum, has been studied. The goal of the study was to understand the regulation of the enzymatic steps associated with biomethane biosynthesis by H-2, using metagenomic, pan-genomic, and transcriptomic approaches. Methanogenesis in the autotrophic methanogen M. fervens could be easily "switched off" and "switched on" by H-2/CO2 within about an hour. In contrast, the heterotrophic methanogen M. thermophilum was practically insensitive to the addition of the H-2/CO2 trigger although this methanogen also converted H-2/CO2 to CH4. From practical points of view, the regulatory function of H-2/CO2 suggests that in the power-to-gas (P2G) renewable excess electricity conversion and storage systems, the composition of the biomethane-generating methanogenic community is essential for sustainable operation. In addition to managing the specific hydrogenotrophic methanogenesis biochemistry, H-2/CO2 affected several, apparently unrelated, metabolic pathways. The redox-regulated overall biochemistry and symbiotic relationships in the methanogenic communities should be explored in order to make the P2G technology more efficient
    corecore