222 research outputs found

    The diverse magneto-optical selection rules in bilayer black phosphorus

    Full text link
    The magneto-optical properties of bilayer phosphorene is investigated by the generalized tight-binding model and the gradient approximation. The vertical inter-Landau-level transitions, being sensitive to the polarization directions, are mainly determined by the spatial symmetries of sub-envelope functions on the distinct sublattices. The anisotropic excitations strongly depend on the electric and magnetic fields. A perpendicular uniform electric field could greatly diversify the selection rule, frequency, intensity, number and form of symmetric absorption peaks. Specifically, the unusual magneto-optical properties appear beyond the critical field as a result of two subgroups of Landau levels with the main and side modes. The rich and unique magneto-absorption spectra arise from the very close relations among the geometric structures, multiple intralayer and interlayer hopping integrals, and composite external fields

    Proteomic analysis of rhein-induced cyt: ER stress mediates cell death in breast cancer cells

    Get PDF
    Rhein is a natural product purified from herbal plants such as Rheum palmatum, which has been shown to have anti-angiogenesis and anti-tumor metastasis properties. However, the biological effects of rhein on the behavior of breast cancers are not completely elucidated. To evaluate whether rhein might be useful in the treatment of breast cancer and its cytotoxic mechanism, we analyzed the impact of rhein treatment on differential protein expression as well as redox regulation in a non-invasive breast cancer cell line, MCF-7, and an invasive breast cancer cell line, MDA-MB-231, using lysine- and cysteine-labeling two-dimensional difference gel electrophoresis (2D-DIGE) combined with MALDI-TOF/TOF mass spectrometry. This proteomic study revealed that 73 proteins were significantly changed in protein expression; while 9 proteins were significantly altered in thiol reactivity in both MCF-7 and MDA-MB-231 cells. The results also demonstrated that rhein-induced cytotoxicity in breast cancer cells mostly involves dysregulation of cytoskeleton regulation, protein folding, the glycolysis pathway and transcription control. A further study also indicated that rhein promotes misfolding of cellular proteins as well as unbalancing of the cellular redox status leading to ER-stress. Our work shows that the current proteomic strategy offers a high-through-put platform to study the molecular mechanisms of rhein-induced cytotoxicity in breast cancer cells. The identified differentially expressed proteins might be further evaluated as potential targets in breast cancer therapy

    Outcome of lung cancer patients with acute respiratory failure requiring mechanical ventilation

    Get PDF
    AbstractTo assess the weaning outcome of lung cancer patients with acute respiratory failure (ARF) requiring mechanical ventilation, we retrospectively analyzed the database of the respiratory intensive care unit at a university-affiliated tertiary care hospital.Charts were reviewed for cancer status, biochemistries before respiratory failure, causes of respiratory failure, acute physiology and chronic health evaluation (APACHE) III score, ventilatory settings, data recorded during spontaneous breathing, duration of ventilator days, and weaning outcome. Ninety-five consecutive respiratory failure events in 81 patients were recorded from January 1, 1995 through June 30, 1999.Twenty-six episodes ended with successful weaning (27.4%). Age, gender, and cancer status did not affect the weaning outcome. Serum albumin level, APACHE III score, highest fractional inspired O2 (FiO2) and highest positive end-expiratory pressure, organ failure, ability to shift to partial ventilatory support, and duration of mechanical ventilation could significantly influence the weaning outcome statistically. The overall hospital mortality rate was 85.2%.Our results suggested that lung cancer patients with ARF will have a better chance to wean if the initial APACHE III score was less than 70, use of FiO2 never exceeded 0.6, or less than 2 additional organ systems failed during the treatment course

    Persistence of Japanese Encephalitis Virus Is Associated with Abnormal Expression of the Nonstructural Protein NS1 in Host Cells

    Get PDF
    AbstractPersistent infection with Japanese encephalitis virus (JEV) was established in murine neuroblastoma N18 cells, and the persistency has been maintained in cell culture for over 6 months. From the persistently infected cells, a clone named C2-2 was selected and expanded to form a stable cell line. The vast majority of C2-2 cells showed viral protein staining by immunofluorescence and continuously produced low levels of virus (103to 104PFU/ml) without marked cytopathic effects or cyclic variations. In addition to the wild-type viral proteins, truncated forms of the viral nonstructural protein 1 (NS1) as well as its derivative NS1′ were produced in C2-2 cells. Both truncated NS1 and NS1′ contain deletions at their N-termini; however, the analyses by RT–PCR and direct sequencing of the viral RNA failed to detect any truncations or mutations within the NS1 region, suggesting that NS1 truncation was a result of a unique posttranslational proteolytic cleavage of NS1 in the persistently infected cells. Similar but not identical truncation of NS1 was also observed in two other persistently infected cell lines established in Vero and DBT (murine astrocytoma) cells. However, viruses released from C2-2 cells did not produce truncated NS1 upon infection of N18 cells, suggesting that NS1 truncations were the result of virus–cell interaction in persistently infected cells. These data indicate a strong association between abnormal NS1 expression and JEV persistency. A probable involvement of dysfunctional NS1 in the establishment and/or maintenance of JEV persistency in tissue culture is discussed

    Antiviral Ability of Kalanchoe gracilis Leaf Extract against Enterovirus 71 and Coxsackievirus A16

    Get PDF
    Pandemic infection or reemergence of Enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) occurs in tropical and subtropical regions, being associated with hand-foot-and-mouth disease, herpangina, aseptic meningitis, brain stem encephalitis, pulmonary edema, and paralysis. However, effective therapeutic drugs against EV71 and CVA16 are rare. Kalanchoe gracilis (L.) DC is used for the treatment of injuries, pain, and inflammation. This study investigated antiviral effects of K. gracilis leaf extract on EV71 and CVA16 replications. HPLC analysis with a C-18 reverse phase column showed fingerprint profiles of K. gracilis leaf extract had 15 chromatographic peaks. UV/vis absorption spectra revealed peaks 5, 12, and 15 as ferulic acid, quercetin, and kaempferol, respectively. K. gracilis leaf extract showed little cytotoxicity, but exhibited concentration-dependent antiviral activities including cytopathic effect, plaque, and virus yield reductions. K. gracilis leaf extract was shown to be more potent in antiviral activity than ferulic acid, quercetin, and kaempferol, significantly inhibiting in vitro replication of EV71 (IC50 = 35.88 μg/mL) and CVA16 (IC50 = 42.91 μg/mL). Moreover, K. gracilis leaf extract is a safe antienteroviral agent with the inactivation of viral 2A protease and reduction of IL-6 and RANTES expressions
    corecore