77 research outputs found

    Infrared Candidates for the Intense Galactic X-ray Source GX 17+2

    Get PDF
    We present new astrometric solutions and infrared Hubble Space Telescope observations of GX 17+2 (X1813-140), one of the brightest X-ray sources on the celestial sphere. Despite 30 years of intensive study, and the existence of a strong radio counterpart with a sub-arcsecond position, the object remains optically unidentified. The observed X-ray characteristics strongly suggest that it is a so-called "Z-source," the rare but important category that includes Sco X-1 and Cyg X-2. Use of the USNO-A2.0 catalog enables us to measure the position of optical and infrared objects near the radio source to sub-arcsecond precision within the International Celestial Reference Frame, for direct comparison with the radio position, which we also recompute using modern calibrators. With high confidence we eliminate the V~17.5 star NP Ser, often listed as the probable optical counterpart of the X-ray source, as a candidate. Our HST NICMOS observations show two faint objects within our 0.5" radius 90% confidence error circle. Even the brighter of the two, Star A, is far fainter than expected (H~19.8), given multiple estimates of the extinction in this field and our previous understanding of Z sources, but it becomes the best candidate for the counterpart of GX 17+2. The probability of a chance coincidence of an unrelated faint object on the radio position is high. However, if the true counterpart is not Star A, it is fainter still, and our conclusion that the optical counterpart is surprisingly underluminous is but strengthened.Comment: 15 pages including 3 figures and 3 tables. Accepted for publication in The Astrophysical Journa

    Systematic variation in the apparent burning area of thermonuclear bursts and its implication for neutron star radius measurement

    Full text link
    Precision measurements of neutron star radii can provide a powerful probe of the properties of cold matter beyond nuclear density. Beginning in the late 1970s it was proposed that the radius could be obtained from the apparent or inferred emitting area during the decay portions of thermonuclear (type I) X-ray bursts. However, this apparent area is generally not constant, preventing reliable measurement of the source radius. Here we report for the first time a correlation between the variation of the inferred area and the burst properties, measured in a sample of almost 900 bursts from 43 sources. We found that the rate of change of the inferred area during decay is anticorrelated with the burst decay duration. A Spearman rank correlation test shows that this relation is significant at the <10^{-45} level for our entire sample, and at the 7x10^{-37} level for the 625 bursts without photospheric radius expansion. This anticorrelation is also highly significant for individual sources exhibiting a wide range of burst durations, such as 4U 1636-536 and Aql X-1. We suggest that variations in the colour factor, which relates the colour temperature resulted from the scattering in the neutron star atmosphere to the effective temperature of the burning layer, may explain the correlation. This in turn implies significant variations in the composition of the atmosphere between bursts with long and short durations.Comment: 8 pages, 4 figures, accepted for publication in MNRA

    Models of Type I X-ray Bursts from GS 1826-24: A Probe of rp-Process Hydrogen Burning

    Full text link
    The X-ray burster GS 1826-24 shows extremely regular Type I X-ray bursts whose energetics and recurrence times agree well with thermonuclear ignition models. We present calculations of sequences of burst lightcurves using multizone models which follow the rp-process nucleosynthesis with an extensive nuclear reaction network. The theoretical and observed burst lightcurves show remarkable agreement. The models naturally explain the slow ~5s rise and long ~100s tails of these bursts, as well as their dependence on mass accretion rate. This comparison provides further evidence for solar metallicity in the accreted material in this source, and constrains the distance to the source. The main difference is that the observed lightcurves do not show the distinct two-stage rise of the models. This may reflect the time for burning to spread over the stellar surface, or may indicate that our treatment of heat transport or nuclear physics needs to be revised. The trends in burst properties with accretion rate are well-reproduced by our spherically symmetric models which include chemical and thermal inertia from the ashes of previous bursts. Changes in the covering fraction of the accreted fuel are not required.Comment: 5 pages, 4 figures, to appear in ApJ letter

    A comparison of neutron star blackbody luminosities in LMXB with the theory of accretion flow spreading on the stellar surface

    Full text link
    We present a comparison of the results of the ASCA survey of LMXB with the Inogamov and Sunyaev theory of accretion flow spreading on the surface of neutron stars. The ASCA survey of LMXB of Church and Balucinska-Church (2001) revealed a systematic variation of the luminosity of blackbody emission from the neutron star spanning 3 decades in total X-ray luminosity suggesting that the level of blackbody emission is controlled by the physics of the inner disk/stellar interface, which we can hope to understand. Two types of explanation exist: firstly that there is radial flow between the inner disk and star at all vertical positions above the orbital plane so that the height of the disk directly determines the area of star emitting. Secondly, the height of the emitting region on the star is not directly related to the disk properties but depends on the mass accretion rate as suggested by Inogamov and Sunyaev (1999) in their theory of accretion flow spreading on the stellar surface. We find that the survey results for the emitting area agree with this theory at the lowest luminosities. However, for higher luminosities, the blackbody emission is stronger than predicted by spreading theory suggesting that the emitting area is controlled by radial flow between disk and star.Comment: 8 pages, 6 ps figures; Astron. and Astrophysics in pres

    A four-hours long burst from Serpens X-1

    Get PDF
    During a serendipitous observation of the BeppoSAX Wide Field Cameras, a very long Type I X-ray burst was observed from the low mass X-ray binary Serpens X-1. The burst lasted for approximately 4 hours and had an exponential decay time of 69+/-2 min (2-28 keV). The bolometric peak-luminosity is (1.6+/-0.2)x10^38 erg/s and the fluence (7.3+/-1.4)x10^41 erg. The first 'normal' Type I burst was observed 34 days after the superburst. This is in rough agreement with recent predictions for unstable carbon burning in a heavy element ocean.Comment: 4 pages, 2 figures, accepted for publication by A&

    A Two-Zone Model for Type I X-ray Bursts on Accreting Neutron Stars

    Full text link
    We construct a two-zone model to describe H and He burning on the surface of an accreting neutron star and use it to study the triggering of type I X-ray bursts. Although highly simplified, the model reproduces all of the bursting regimes seen in the more complete global linear stability analysis of Narayan & Heyl (2003), including the regime of delayed mixed bursts. The results are also consistent with observations of type I X-ray bursts. At accretion rates Mdot < 0.1 Mdot_Edd, thermonuclear He burning via the well-known thin-shell thermal instability triggers bursts. As Mdot increases, however, the trigger mechanism evolves from the fast thermal instability to a slowly growing overstability involving both H and He burning. The competition between nuclear heating via the beta-limited CNO cycle and the triple-alpha process on the one hand, and radiative cooling via photon diffusion and emission on the other hand, drives oscillations with a period approximately equal to the H-burning timescale. If these oscillations grow, the gradually rising temperature at the base of the helium layer eventually provokes a thin-shell thermal instability and hence a delayed mixed burst. For Mdot > 0.25 Mdot_Edd, there is no instability or overstability, and there are no bursts. Nearly all other theoretical models predict that bursts should occur for all Mdot < Mdot_Edd, in conflict with both our results and observations. We suggest that this discrepancy arises from the assumed strength of the hot CNO cycle breakout reaction 15O(alpha,gamma)19Ne in these other models. That observations agree much better with the results of Narayan & Heyl and our two-zone model, both of which neglect breakout reactions, may imply that the true 15O(alpha,gamma)19Ne cross section is much smaller than assumed in previous investigations.Comment: 13 pages, 8 figures, accepted by Ap

    A very rare triple-peaked type-I X-ray burst in the low-mass X-ray binary 4U 1636-53

    Get PDF
    We have discovered a triple-peaked X-ray burst from the low-mass X-ray binary (LMXB) 4U 1636-53 with the Rossi X-ray Timing Explorer (RXTE). This is the first triple-peaked burst reported from any LMXB using RXTE, and it is only the second burst of this kind observed from any source. (The previous one was also from 4U 1636-53, and was observed with EXOSAT.) From fits to time-resolved spectra, we find that this is not a radius-expansion burst, and that the same triple-peaked pattern seen in the X-ray light curve is also present in the bolometric light curve of the burst. Similar to what was previously observed in double-peaked bursts from this source, the radius of the emitting area increases steadily during the burst, with short periods in between during which the radius remains more or less constant. The temperature first increases steeply, and then decreases across the burst also showing three peaks. The first and last peak in the temperature profile occur, respectively, significantly before and significantly after the first and last peaks in the X-ray and bolometric light curves. We found no significant oscillations during this burst. This triple-peaked burst, as well as the one observed with EXOSAT and the double-peak bursts in this source, all took place when 4U 1636-53 occupied a relatively narrow region in the colour-colour diagram, corresponding to a relatively high (inferred) mass-accretion rate. No model presently available is able to explain the multiple-peaked bursts.Comment: 8 pages, 3 figures, accepted for publication in MNRA
    • …
    corecore