44 research outputs found

    Human Migration, Population Divergence, and the Accumulation of Deleterious Alleles: Insights from Private Genetic Variation and Whole-exome Sequencing.

    Full text link
    Private genetic variants---genetic variants found only in a single population in a sample---have been highly informative for studies of evolutionary history. This dissertation uses theoretical modeling and empirical analysis of private genetic variation to understand human demography. I derive theory for analyzing the size distribution of private microsatellite alleles and develop a rarefaction approach to analyze private-allele sharing. Furthermore, I investigate genome-wide patterns of deleterious variants, which are often private. Through the analysis of whole-exome sequences, I describe how potentially deleterious coding variants accumulate and concentrate in inbred genomes. First, I introduce the concept of generalized private alleles and develop a method to count them while correcting for differences in the number of individuals sampled. I use this method to analyze worldwide human populations and observe an excess of alleles shared between Africa and Oceania. The results support the theory of a coastal migration out of Africa into Oceania separate from the migrations responsible for the majority of the ancestry of the modern populations of Asia. Next, I explore how population-genetic parameters affect the size distribution of private microsatellite alleles under a two-population coalescent model, assuming the symmetric stepwise mutation model. Using this framework, I theoretically predict that private microsatellites occur in the tails of the allele size distribution more frequently as genetic differentiation between populations increases. Empirically observing this phenomenon in human populations, I conclude that the model accurately describes patterns of private microsatellite alleles in diverged populations. Finally, I analyze how the genome-wide distribution of runs of homozygosity (ROH) underlies patterns of deleterious variation. Whereas short and intermediate ROH are generated by isolation or bottlenecks, long ROH are likely the result of recent inbreeding. I find that long ROH harbor disproportionately more deleterious homozygotes than is predicted solely by genomic ROH coverage, indicating that inbreeding contributes an abundance of deleterious variation to ROH. This dissertation expands our knowledge of human population genetics and develops novel theoretical and methodological frameworks to study human migration and population divergence from private genetic variation. Furthermore, it provides insights into the accumulation and concentration of deleterious variation.PHDBioinformaticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96095/1/szpiechz_1.pd

    Whole-Genome Sequencing of Pharmacogenetic Drug Response in Racially Diverse Children with Asthma

    Get PDF
    RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10 CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations

    Genotype, haplotype and copy-number variation in worldwide human populations

    Full text link
    Genome-wide patterns of variation across individuals provide a powerful source of data for uncovering the history of migration, range expansion, and adaptation of the human species. However, high-resolution surveys of variation in genotype, haplotype and copy number have generally focused on a small number of population groups(1-3). Here we report the analysis of high-quality genotypes at 525,910 single-nucleotide polymorphisms ( SNPs) and 396 copy-number-variable loci in a worldwide sample of 29 populations. Analysis of SNP genotypes yields strongly supported fine-scale inferences about population structure. Increasing linkage disequilibrium is observed with increasing geographic distance from Africa, as expected under a serial founder effect for the out-of-Africa spread of human populations. New approaches for haplotype analysis produce inferences about population structure that complement results based on unphased SNPs. Despite a difference from SNPs in the frequency spectrum of the copy-number variants (CNVs) detected-including a comparatively large number of CNVs in previously unexamined populations from Oceania and the Americas-the global distribution of CNVs largely accords with population structure analyses for SNP data sets of similar size. Our results produce new inferences about inter-population variation, support the utility of CNVs in human population-genetic research, and serve as a genomic resource for human-genetic studies in diverse worldwide populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62552/1/nature06742.pd

    Whole-genome sequencing of pharmacogenetic drug response in racially diverse children with asthma

    Get PDF
    RATIONALE: Albuterol, a bronchodilator medication, is the first-line therapy for asthma worldwide. There are significant racial/ethnic differences in albuterol drug response. OBJECTIVES: To identify genetic variants important for bronchodilator drug response (BDR) in racially diverse children. METHODS: We performed the first whole-genome sequencing pharmacogenetics study from 1,441 children with asthma from the tails of the BDR distribution to identify genetic association with BDR. MEASUREMENTS AND MAIN RESULTS: We identified population-specific and shared genetic variants associated with BDR, including genome-wide significant (P \u3c 3.53 × 10-7) and suggestive (P \u3c 7.06 × 10-6) loci near genes previously associated with lung capacity (DNAH5), immunity (NFKB1 and PLCB1), and β-adrenergic signaling (ADAMTS3 and COX18). Functional analyses of the BDR-associated SNP in NFKB1 revealed potential regulatory function in bronchial smooth muscle cells. The SNP is also an expression quantitative trait locus for a neighboring gene, SLC39A8. The lack of other asthma study populations with BDR and whole-genome sequencing data on minority children makes it impossible to perform replication of our rare variant associations. Minority underrepresentation also poses significant challenges to identify age-matched and population-matched cohorts of sufficient sample size for replication of our common variant findings. CONCLUSIONS: The lack of minority data, despite a collaboration of eight universities and 13 individual laboratories, highlights the urgent need for a dedicated national effort to prioritize diversity in research. Our study expands the understanding of pharmacogenetic analyses in racially/ethnically diverse populations and advances the foundation for precision medicine in at-risk and understudied minority populations

    A spatially aware likelihood test to detect sweeps from haplotype distributions.

    No full text
    The inference of positive selection in genomes is a problem of great interest in evolutionary genomics. By identifying putative regions of the genome that contain adaptive mutations, we are able to learn about the biology of organisms and their evolutionary history. Here we introduce a composite likelihood method that identifies recently completed or ongoing positive selection by searching for extreme distortions in the spatial distribution of the haplotype frequency spectrum along the genome relative to the genome-wide expectation taken as neutrality. Furthermore, the method simultaneously infers two parameters of the sweep: the number of sweeping haplotypes and the "width" of the sweep, which is related to the strength and timing of selection. We demonstrate that this method outperforms the leading haplotype-based selection statistics, though strong signals in low-recombination regions merit extra scrutiny. As a positive control, we apply it to two well-studied human populations from the 1000 Genomes Project and examine haplotype frequency spectrum patterns at the LCT and MHC loci. We also apply it to a data set of brown rats sampled in NYC and identify genes related to olfactory perception. To facilitate use of this method, we have implemented it in user-friendly open source software
    corecore