40 research outputs found

    Effect of oral administration of green tea extract in various dosage schemes on oxidative stress status of mice in vivo

    Get PDF
    Green tea is a favorite beverage and its extracts are popular components of dietary supplements. The aim of the present in vivo study was to obtain detailed information about the effect of a standard green tea extract (Polyphenon, P), at different doses, on antioxidant enzymes and oxidative stress markers in murine blood, liver, small and large intestine. In all doses, P improved the oxidative stress status via an increased content of plasmatic SH-groups (by 21–67 %). Regarding antioxidant enzymes in tissues, the low dose of P had the best effect as it elevated the activity of NADPH/quinone reductase in liver and small intestine, thioredoxin reductase in small intestine and hepatic superoxide dismutase. Based on these facts, consumation of green tea seems to be safe and beneficial, while consumption of dietary supplements containing high doses of catechins may disturb oxidative balance by lowering the activity of thioredoxin reductase, glutathione S-transferase, glutathione reductase and superoxide dismutase

    Induction of xenobiotic-metabolizing enzymes in hepatocytes by beta-naphthoflavone: Time-dependent changes in activities, protein and mRNA levels

    Get PDF
    In the present study, time-dependency of the induction effect of a selective inducer on the activity, protein and mRNA levels of cytochromes P450 1A1/2 (CYP1A1/2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferases (GSTA), in primary culture of rat hepatocytes was tested and evaluated. To show the differences in responses of tested enzymes, the common aryl hydrocarbon receptor (AhR) ligand agonist, beta-naphthoflavone (BNF), was used. Induction of CYP1A1/2 by BNF was detected at all time intervals and at all levels (i.e., mRNA, protein, enzyme activity). Different responses of NQO1 and GSTA upon BNF treatment were observed. Our results demonstrate that the responses of different xenobiotic-metabolizing enzymes to the inducer vary in time and depend on the measured parameter. For these reasons, an induction study featuring only one-time interval treatment and/or one parameter testing could produce misleading information

    UDP-glycosyltransferase family in Haemonchus contortus: Phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences

    Get PDF
    UDP-glycosyltransferases (UGT), catalysing conjugation of UDP-activated sugar donors to small lipophilic chemicals, are widespread in living organisms from bacteria to fungi, plant, or animals. The progress of genome sequencing has enabled an assessment of the UGT multigene family in Haemonchus contortus (family Trichostrongylidae, Nematoda), a hematophagous gastrointestinal parasite of small ruminants. Here we report 32 putative UGT genes divided into 15 UGT families. Phylogenetic analysis in comparison with UGTs from Caenorhabditis elegans, a free-living model nematode, revealed several single member homologues, a lack of the dramatic gene expansion seen in C. elegans, but also several families (UGT365, UGT366, UGT368) expanded in H. contortus only. The assessment of constitutive UGT mRNA expression in H. contortus adults identified significant differences between females and males. In addition, we compared the expression of selected UGTs in the drug-sensitive ISE strain to two benzimidazole-resistant strains, IRE and WR, with different genetic backgrounds. Constitutive expression of UGT368B2 was significantly higher in both resistant strains than in the sensitive strain. As resistant strains were able to deactivate benzimidazole anthelmintics via glycosylation more effectively then the sensitive strain, UGT368B2 enhanced constitutive expression might contribute to drug resistance in H. contortus

    Carbonyl Reduction of Flubendazole in the Human Liver: Strict Stereospecificity, Sex Difference, Low Risk of Drug Interactions

    Get PDF
    Flubendazole (FLU), an anthelmintic drug of benzimidazole type, is now considered a promising anti-cancer agent due to its tubulin binding ability and low system toxicity. The present study was aimed at determining more information about FLU reduction in human liver, because this information has been insufficient until now. Subcellular fractions from the liver of 12 human patients (6 male and 6 female patients) were used to study the stereospecificity, cellular localization, coenzyme preference, enzyme kinetics, and possible inter-individual or sex differences in FLU reduction. In addition, the risk of FLU interaction with other drugs was evaluated. Our study showed that FLU is predominantly reduced in cytosol, and the reduced nicotinamide adenine dinucleotide phosphate (NADPH) coenzyme is preferred. The strict stereospecificity of FLU carbonyl reduction was proven, and carbonyl reductase 1 was identified as the main enzyme of FLU reduction in the human liver. A higher reduction of FLU and a higher level of carbonyl reductase 1 protein were found in male patients than in female patients, but overall inter-individual variability was relatively low. Hepatic intrinsic clearance of FLU is very low, and FLU had no effect on doxorubicin carbonyl reduction in the liver and in cancer cells. All these results fill the gaps in the knowledge of FLU metabolism in human

    Sulforaphane Alters β-Naphthoflavone-Induced Changes in Activity and Expression of Drug-Metabolizing Enzymes in Rat Hepatocytes

    No full text
    Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, exerts many beneficial effects on human health such as antioxidant, anti-inflammatory, and anticancer effects. The effect of SFN alone on drug-metabolizing enzymes (DMEs) has been investigated in numerous in vitro and in vivo models, but little is known about the effect of SFN in combination with cytochrome P450 (CYP) inducer. The aim of our study was to evaluate the effect of SFN on the activity and gene expression of selected DMEs in primary cultures of rat hepatocytes treated or non-treated with β-naphthoflavone (BNF), the model CYP1A inducer. In our study, SFN alone did not significantly alter the activity and expression of the studied DMEs, except for the glutathione S-transferase (GSTA1) mRNA level, which was significantly enhanced. Co-treatment of hepatocytes with SFN and BNF led to a substantial increase in sulfotransferase, aldoketoreductase 1C, carbonylreductase 1 and NAD(P)H:quinone oxidoreductase 1 activity and a marked decrease in cytochrome P450 (CYP) Cyp1a1, Cyp2b and Cyp3a4 expression in comparison to the treatment with BNF alone. Sulforaphane is able to modulate the activity and/or expression of DMEs, thus shifting the balance of carcinogen metabolism toward deactivation, which could represent an important mechanism of its chemopreventive activity

    Induction of xenobiotic-metabolizing enzymes in hepatocytes by beta-naphthoflavone: Time-dependent changes in activities, protein and mRNA levels

    No full text
    In the present study, time-dependency of the induction effect of a selective inducer on the activity, protein and mRNA levels of cytochromes P450 1A1/2 (CYP1A1/2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and glutathione S-transferases (GSTA), in primary culture of rat hepatocytes was tested and evaluated. To show the differences in responses of tested enzymes, the common aryl hydrocarbon receptor (AhR) ligand agonist, beta-naphthoflavone (BNF), was used. Induction of CYP1A1/2 by BNF was detected at all time intervals and at all levels (i.e., mRNA, protein, enzyme activity). Different responses of NQO1 and GSTA upon BNF treatment were observed. Our results demonstrate that the responses of different xenobiotic-metabolizing enzymes to the inducer vary in time and depend on the measured parameter. For these reasons, an induction study featuring only one-time interval treatment and/ or one parameter testing could produce misleading information

    Effect of Green Tea Extract-Enriched Diets on Insulin and Leptin Levels, Oxidative Stress Parameters and Antioxidant Enzymes Activities in Obese Mice

    No full text
    Green tea and green tea extracts (GTE) are often incorporated into diet intended to weight reduction, although the information about their efficacy in obese individuals is insufficient. The present study was designed to follow up the effect of defined and standardized GTE in mice with obesity induced by monosodium L-glutamate. Obese mice were fed with GTE-supplemented diet in three dosage regimens: 28-day and 3-day intake of 1 g GTE in 1 kg of diet and 28-day intake of 0.1 g GTE in 1 kg of diet. The information on body weight, food intake, oxidation stress parameters in blood and antioxidant enzymes activity in liver and small intestine was obtained. High doses of GTE decreased the specific activities of glutathione reductase and catalase and increased concentrations of malondialdehyde in blood. Specific activities of antioxidant enzymes in the liver and small intestine were not altered after GTE treatment except the decrease of NAD(P)H:quinone oxidoreductase activity. Our results showed that GTE did not affect average body weight and did not markedly improve antioxidant status in glutamate-induced obese mice. Moreover, intake of high doses of GTE made antioxidant defense in obese animals even worse

    Effect of Standardized Cranberry Extract on the Activity and Expression of Selected Biotransformation Enzymes in Rat Liver and Intestine

    No full text
    The use of dietary supplements containing cranberry extract is a common way to prevent urinary tract infections. As consumption of these supplements containing a mixture of concentrated anthocyanins and proanthocyanidins has increased, interest in their possible interactions with drug-metabolizing enzymes has grown. In this in vivo study, rats were treated with a standardized cranberry extract (CystiCran®) obtained from Vaccinium macrocarpon in two dosage schemes (14 days, 0.5 mg of proanthocyanidins/kg/day; 1 day, 1.5 mg of proanthocyanidins/kg/day). The aim of this study was to evaluate the effect of anthocyanins and proanthocyanidins contained in this extract on the activity and expression of intestinal and hepatic biotransformation enzymes: cytochrome P450 (CYP1A1, CYP1A2, CYP2B and CYP3A), carbonyl reductase 1 (CBR1), glutathione-S-transferase (GST) and UDP-glucuronosyl transferase (UGT). Administration of cranberry extract led to moderate increases in the activities of hepatic CYP3A (by 34%), CYP1A1 (by 38%), UGT (by 40%), CBR1 (by 17%) and GST (by 13%), while activities of these enzymes in the small intestine were unchanged. No changes in the relative amounts of these proteins were found. Taken together, the interactions of cranberry extract with simultaneously administered drugs seem not to be serious

    Age-Related Changes in Hepatic Activity and Expression of Detoxification Enzymes in Male Rats

    Get PDF
    Process of aging is accompanied by changes in the biotransformation of xenobiotics and impairment of normal cellular functions by free radicals. Therefore, this study was designed to determine age-related differences in the activities and/or expressions of selected drug-metabolizing and antioxidant enzymes in young and old rats. Specific activities of 8 drug-metabolizing enzymes and 4 antioxidant enzymes were assessed in hepatic subcellular fractions of 6-week-old and 21-month-old male Wistar rats. Protein expressions of carbonyl reductase 1 (CBR1) and glutathione S-transferase (GST) were determined using immunoblotting. Remarkable age-related decrease in specific activities of CYP2B, CYP3A, and UDP-glucuronosyl transferase was observed, whereas no changes in activities of CYP1A2, flavine monooxygenase, aldo-keto reductase 1C, and antioxidant enzymes with advancing age were found. On the other hand, specific activity of CBR1 and GST was 2.4 folds and 5.6 folds higher in the senescent rats compared with the young ones, respectively. Interindividual variability in CBR1 activity increased significantly with rising age. We suppose that elevated activities of GST and CBR1 may protect senescent rats against xenobiotic as well as eobiotic electrophiles and reactive carbonyls, but they may alter metabolism of drugs, which are CBR1 and especially GSTs substrates

    Soybean (Glycine max) Is Able to Absorb, Metabolize and Accumulate Fenbendazole in All Organs Including Beans

    No full text
    Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids
    corecore