609 research outputs found

    Insulator-to-metal transition of SrTiO3:Nb single crystal surfaces induced by Ar+ bombardment

    Get PDF
    In this paper, the effect of Ar+ bombardment of SrTiO3:Nb surface layers is investigated on the macro- and nanoscale using surface-sensitive methods. After bombardment, the stoichiometry and electronic structure are changed distinctly leading to an insulator-to-metal transition related to the change of the Ti "d" electron from d0 to d1 and d2. During bombardment, conducting islands are formed on the surface. The induced metallic state is not stable and can be reversed due to a redox process by external oxidation and even by self-reoxidation upon heating the sample to temperatures of 300{\deg}C.Comment: 4 pages, 4 figure

    Novel Quaternary Dilute Magnetic Semiconductor (Ga,Mn)(Bi,As): Magnetic and Magneto-Transport Investigations

    Full text link
    Magnetic and magneto-transport properties of thin layers of the (Ga,Mn)(Bi,As) quaternary dilute magnetic semiconductor grown by the low-temperature molecular-beam epitaxy technique on GaAs substrates have been investigated. Ferromagnetic Curie temperature and magneto-crystalline anisotropy of the layers have been examined by using magneto-optical Kerr effect magnetometry and low-temperature magneto-transport measurements. Postgrowth annealing treatment has been shown to enhance the hole concentration and Curie temperature in the layers. Significant increase in the magnitude of magnetotransport effects caused by incorporation of a small amount of Bi into the (Ga,Mn)As layers revealed in the planar Hall effect (PHE) measurements, is interpreted as a result of enhanced spin-orbit coupling in the (Ga,Mn)(Bi,As) layers. Two-state behaviour of the planar Hall resistance at zero magnetic field provides its usefulness for applications in nonvolatile memory devices.Comment: 10 pages, 3 figures, to be published in the Proceedings of ICSM-2016 conferenc

    Hafnium carbide formation in oxygen deficient hafnium oxide thin films

    Full text link
    On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO2−x_{2-x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfCx_x) at the surface during vacuum annealing at temperatures as low as 600 {\deg}C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfCx_x surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO2_2 thin films prepared and measured under identical conditions, the formation of HfCx_x was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films provides a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating

    Inhomogeneity of donor doping in SrTiO3 substrates studied by fluorescence-lifetime imaging microscopy

    Get PDF
    Fluorescence-lifetime imaging microscopy (FLIM) was applied to investigate the donor distribution in SrTiO3 single crystals. On the surfaces of Nb- and La-doped SrTiO3, structures with different fluorescence intensities and lifetimes were found that could be related to different concentrations of Ti3+. Furthermore, the inhomogeneous distribution of donors caused a non-uniform conductivity of the surface, which complicates the production of potential electronic devices by the deposition of oxide thin films on top of doped single crystals. Hence, we propose FLIM as a convenient technique (length scale: 1 μ\mum) for characterizing the quality of doped oxide surfaces, which could help to identify appropriate substrate materials

    Proceedings of the XXXVI International School of Semiconducting Compounds

    Get PDF
    The new approach to the understanding of intrashallow donor transition in the reduced dimensionality systems is presented. The magnetospectroscopy experiments done on the CdTe/CdMgTe quantum well based samples, uniformly n-doped, show indications that the surprising lack of spectral sensitivity on applied photon energy can be understood as a result of sample response coming from its different regions. This "non spectroscopic" behaviour (in a sense of the Zeeman splitting) is a consequence of the properties of systems with reduced dimensionality where variety of centre locations in the structure results in continuous density of states available for absorption

    Effect of Misfit Strain in (Ga,Mn)(Bi,As) Epitaxial Layers on their Magnetic and Magneto-Transport Properties

    Full text link
    Effect of misfit strain in the layers of (Ga,Mn)(Bi,As) quaternary diluted magnetic semiconductor, epitaxially grown on either GaAs substrate or (In,Ga)As buffer, on their magnetic and magneto-transport properties has been investigated. High-resolution X-ray diffraction, applied to characterize the structural quality and misfit strain in the layers, proved that the layers were fully strained to the GaAs substrate or (In,Ga)As buffer under compressive or tensile strain, respectively. Ferromagnetic Curie temperature and magnetocrystalline anisotropy of the layers have been examined by using magneto-optical Kerr effect magnetometry and low-temperature magneto-transport measurements. Post-growth annealing treatment of the layers has been shown to enhance the hole concentration and Curie temperature in the layers.Comment: 8 pages, 3 figure
    • …
    corecore