9 research outputs found

    The global impact of offshore wind farms on ecosystem services

    Get PDF
    Understanding the global impact of offshore wind farms (OWF) on biodiversity and ecosystem services (ES) is crucial in developing sustainable energy transition pathways. This study takes a holistic approach, coupling a semi-systematic review with a novel analytical methodology, to consider the consequences of construction & operation of OWF deployment on biodiversity and ES. 314 pieces of evidence taken from 132 peer-reviewed studies provide the basis to determine the ecological and ES impacts. The process showed that construction impacts were predominantly negative across the ecological subject groups (52%), compared with positive im�pacts (8%) with several species of fish (e.g. brill, cod, dab, plaice) and some species of birds (e.g. common guillemot, northern fulmar, redhead) showing strongly negative trends. Operational phase impacts were more variable and could be either negative (32%) or positive (34%) depending on site specific conditions. More detailed investigations into fish, shellfish, humans and air-surface studies recorded a net positive effect of wind farm operations on these subject groups. Translation into ES outcomes identified that 14 ES are impacted by the construction and operation of OWF. The most substantially enhanced ES included effects on commercial fisheries and experiential recreation. Social acceptance toward new and hypothetical OWF was also strongly positive, irrespective of country location. Negative effects on ES, including existence values for culturally important groups, e.g., marine mammals and birds and the spread of non-native species, are potentially of most signifi�cance. Overall, this study finds more than 86% of possible offshore wind farm impacts on ES are still unknown. There was also a paucity of studies on the decommissioning of OWF and the impacts of deeper-water floating structures, with a bias in studies toward northern hemisphere and developed countries

    Response of benthic fauna to experimental bottom fishing: A global meta‐analysis

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordBottom-contact fishing gears are globally the most widespread anthropogenic sources of direct disturbance to the seabed and associated biota. Managing these fishing disturbances requires quantification of gear impacts on biota and the rate of recovery following disturbance. We undertook a systematic review and meta-analysis of 122 experiments on the effects-of-bottom fishing to quantify the removal of benthos in the path of the fishing gear and to estimate rates of recovery following disturbance. A gear pass reduced benthic invertebrate abundance by 26% and species richness by 19%. The effect was strongly gear-specific, with gears that penetrate deeper into the sediment having a significantly larger impact than those that penetrate less. Sediment composition (% mud and presence of biogenic habitat) and the history of fishing disturbance prior to an experimental fishing event were also important predictors of depletion, with communities in areas that were not previously fished, predominantly muddy or biogenic habitats being more strongly affected by fishing. Sessile and low mobility biota with longer life-spans such as sponges, soft corals and bivalves took much longer to recover after fishing (>3 year) than mobile biota with shorter life-spans such as polychaetes and malacostracans (<1 year). This meta-analysis provides insights into the dynamics of recovery. Our estimates of depletion along with estimates of recovery rates and large-scale, high-resolution maps of fishing frequency and habitat will support more rigorous assessment of the environmental impacts of bottom-contact gears, thus supporting better informed choices in trade-offs between environmental impacts and fish production

    Perfluorinated Compounds in Drinking Water, Food and Human Samples

    No full text

    THE 2010 VERY HIGH ENERGY gamma-RAY FLARE AND 10 YEARS OF MULTI-WAVELENGTH OBSERVATIONS OF M 87

    No full text
    corecore