8 research outputs found

    Defining Lineage Potential and Fate Behavior of Precursors during Pancreas Development

    Get PDF
    Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments

    Multi-site Neurogenin3 Phosphorylation Controls Pancreatic Endocrine Differentiation

    Get PDF
    The proneural transcription factor Neurogenin3 (Ngn3) plays a critical role in pancreatic endocrine cell differentiation, although regulation of Ngn3 protein is largely unexplored. Here we demonstrate that Ngn3 protein undergoes cyclin-dependent kinase (Cdk)-mediated phosphorylation on multiple serine-proline sites. Replacing wild-type protein with a phosphomutant form of Ngn3 increases α cell generation, the earliest endocrine cell type to be formed in the developing pancreas. Moreover, un(der)phosphorylated Ngn3 maintains insulin expression in adult ÎČ cells in the presence of elevated c-Myc and enhances endocrine specification during ductal reprogramming. Mechanistically, preventing multi-site phosphorylation enhances both Ngn3 stability and DNA binding, promoting the increased expression of target genes that drive differentiation. Therefore, multi-site phosphorylation of Ngn3 controls its ability to promote pancreatic endocrine differentiation and to maintain ÎČ cell function in the presence of pro-proliferation cues and could be manipulated to promote and maintain endocrine differentiation in vitro and in vivo.This work was supported by the MRC Research GrantMR/K018329/1; the Rosetrees Trust (to A.P. and R.A.); the MRC Research Grant MR/L021129/1 and core support from the Wellcome Trust and the MRC Cambridge Stem Cell Institute (to A.P. and F.A.); the MRC Doctoral Training Awards (to L.M., L.H., and M.S.); the CRUK studentship (to C. Hurley); the Wellcome Trust 098357/Z/12/Z (to B.D.S. and R.A.); and the Wellcome Trust 097922/Z/11/Z and the Clinical Research Infrastructure Single-Cell Facility (MR/M008975/1) (to B.G.). D.W. and R.K. are CRUK funded; G.E. is CRUK A12077 funded. M.H. is a Sir Henry Dale fellow and is supported by the Wellcome Trust 104151/Z/14/A and the Royal Society

    Serum tumor markers in pediatric osteosarcoma: a summary review

    Get PDF
    Osteosarcoma is the most common primary high-grade bone tumor in both adolescents and children. Early tumor detection is key to ensuring effective treatment. Serum marker discovery and validation for pediatric osteosarcoma has accelerated in recent years, coincident with an evolving understanding of molecules and their complex interactions, and the compelling need for improved pediatric osteosarcoma outcome measures in clinical trials. This review gives a short overview of serological markers for pediatric osteosarcoma, and highlights advances in pediatric osteosarcoma-related marker research within the past year. Studies in the past year involving serum markers in patients with pediatric osteosarcoma can be assigned to one of four categories, i.e., new approaches and new markers, exploratory studies in specialized disease subsets, large cross-sectional validation studies, and longitudinal studies, with and without an intervention

    Defining Lineage Potential and Fate Behavior of Precursors during Pancreas Development

    Get PDF
    Pancreas development involves a coordinated process in which an early phase of cell segregation is followed by a longer phase of lineage restriction, expansion, and tissue remodeling. By combining clonal tracing and whole-mount reconstruction with proliferation kinetics and single-cell transcriptional profiling, we define the functional basis of pancreas morphogenesis. We show that the large-scale organization of mouse pancreas can be traced to the activity of self-renewing precursors positioned at the termini of growing ducts, which act collectively to drive serial rounds of stochastic ductal bifurcation balanced by termination. During this phase of branching morphogenesis, multipotent precursors become progressively fate-restricted, giving rise to self-renewing acinar-committed precursors that are conveyed with growing ducts, as well as ductal progenitors that expand the trailing ducts and give rise to delaminating endocrine cells. These findings define quantitatively how the functional behavior and lineage progression of precursor pools determine the large-scale patterning of pancreatic sub-compartments
    corecore