251 research outputs found

    Asymptotics for the Wiener sausage among Poissonian obstacles

    Full text link
    We consider the Wiener sausage among Poissonian obstacles. The obstacle is called hard if Brownian motion entering the obstacle is immediately killed, and is called soft if it is killed at certain rate. It is known that Brownian motion conditioned to survive among obstacles is confined in a ball near its starting point. We show the weak law of large numbers, large deviation principle in special cases and the moment asymptotics for the volume of the corresponding Wiener sausage. One of the consequence of our results is that the trajectory of Brownian motion almost fills the confinement ball.Comment: 19 pages, Major revision made for publication in J. Stat. Phy

    Motility of small nematodes in disordered wet granular media

    Full text link
    The motility of the worm nematode \textit{Caenorhabditis elegans} is investigated in shallow, wet granular media as a function of particle size dispersity and area density (ϕ\phi). Surprisingly, we find that the nematode's propulsion speed is enhanced by the presence of particles in a fluid and is nearly independent of area density. The undulation speed, often used to differentiate locomotion gaits, is significantly affected by the bulk material properties of wet mono- and polydisperse granular media for ϕ≥0.55\phi \geq 0.55. This difference is characterized by a change in the nematode's waveform from swimming to crawling in dense polydisperse media \textit{only}. This change highlights the organism's adaptability to subtle differences in local structure and response between monodisperse and polydisperse media

    Cut Points and Diffusions in Random Environment

    Full text link
    In this article we investigate the asymptotic behavior of a new class of multi-dimensional diffusions in random environment. We introduce cut times in the spirit of the work done by Bolthausen, Sznitman and Zeitouni, see [4], in the discrete setting providing a decoupling effect in the process. This allows us to take advantage of an ergodic structure to derive a strong law of large numbers with possibly vanishing limiting velocity and a central limit theorem under the quenched measure.Comment: 44 pages; accepted for publication in "Journal of Theoretical Probability

    Real-time 3D Tracking of Articulated Tools for Robotic Surgery

    Full text link
    In robotic surgery, tool tracking is important for providing safe tool-tissue interaction and facilitating surgical skills assessment. Despite recent advances in tool tracking, existing approaches are faced with major difficulties in real-time tracking of articulated tools. Most algorithms are tailored for offline processing with pre-recorded videos. In this paper, we propose a real-time 3D tracking method for articulated tools in robotic surgery. The proposed method is based on the CAD model of the tools as well as robot kinematics to generate online part-based templates for efficient 2D matching and 3D pose estimation. A robust verification approach is incorporated to reject outliers in 2D detections, which is then followed by fusing inliers with robot kinematic readings for 3D pose estimation of the tool. The proposed method has been validated with phantom data, as well as ex vivo and in vivo experiments. The results derived clearly demonstrate the performance advantage of the proposed method when compared to the state-of-the-art.Comment: This paper was presented in MICCAI 2016 conference, and a DOI was linked to the publisher's versio

    Equality of averaged and quenched large deviations for random walks in random environments in dimensions four and higher

    Full text link
    We consider large deviations for nearest-neighbor random walk in a uniformly elliptic i.i.d. environment. It is easy to see that the quenched and the averaged rate functions are not identically equal. When the dimension is at least four and Sznitman's transience condition (T) is satisfied, we prove that these rate functions are finite and equal on a closed set whose interior contains every nonzero velocity at which the rate functions vanish.Comment: 17 pages. Minor revision. In particular, note the change in the title of the paper. To appear in Probability Theory and Related Fields

    Random walks in random Dirichlet environment are transient in dimension d≥3d\ge 3

    Full text link
    We consider random walks in random Dirichlet environment (RWDE) which is a special type of random walks in random environment where the exit probabilities at each site are i.i.d. Dirichlet random variables. On Zd\Z^d, RWDE are parameterized by a 2d2d-uplet of positive reals. We prove that for all values of the parameters, RWDE are transient in dimension d≥3d\ge 3. We also prove that the Green function has some finite moments and we characterize the finite moments. Our result is more general and applies for example to finitely generated symmetric transient Cayley graphs. In terms of reinforced random walks it implies that directed edge reinforced random walks are transient for d≥3d\ge 3.Comment: New version published at PTRF with an analytic proof of lemma

    Inverting Ray-Knight identity

    Full text link
    We provide a short proof of the Ray-Knight second generalized Theorem, using a martingale which can be seen (on the positive quadrant) as the Radon-Nikodym derivative of the reversed vertex-reinforced jump process measure with respect to the Markov jump process with the same conductances. Next we show that a variant of this process provides an inversion of that Ray-Knight identity. We give a similar result for the Ray-Knight first generalized Theorem.Comment: 18 page

    Visual Field Prognosis From Macula and Circumpapillary Spectral Domain Optical Coherence Tomography.

    Get PDF
    PURPOSE To explore the structural-functional loss relationship from optic-nerve-head- and macula-centred spectral-domain (SD) Optical Coherence Tomography (OCT) images in the full spectrum of glaucoma patients using deep-learning methods. METHODS A cohort comprising 5238 unique eyes classified as suspects or diagnosed with glaucoma was considered. All patients underwent ophthalmologic examination consisting of standard automated perimetry (SAP), macular OCT, and peri-papillary OCT on the same day. Deep learning models were trained to estimate G-pattern visual field (VF) mean deviation (MD) and cluster MD using retinal thickness maps from seven layers: retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer and outer plexiform layer (INL + OPL), outer nuclear layer (ONL), photoreceptors and retinal pigmented epithelium (PR + RPE), choriocapillaris and choroidal stroma (CC + CS), total retinal thickness (RT). RESULTS The best performance on MD prediction is achieved by RNFL, GCL + IPL and RT layers, with R2 scores of 0.37, 0.33, and 0.31, respectively. Combining macular and peri-papillary scans outperforms single modality prediction, achieving an R2 value of 0.48. Cluster MD predictions show promising results, notably in central clusters, reaching an R2 of 0.56. CONCLUSIONS The combination of multiple modalities, such as optic-nerve-head circular B-scans and retinal thickness maps from macular SD-OCT images, improves the performance of MD and cluster MD prediction. Our proposed model demonstrates the highest level of accuracy in predicting MD in the early-to-mid stages of glaucoma. TRANSLATIONAL RELEVANCE Objective measures recorded with SD-OCT can optimize the number of visual field tests and improve individualized glaucoma care by adjusting VF testing frequency based on deep-learning estimates of functional damage

    Slow movement of a random walk on the range of a random walk in the presence of an external field

    Get PDF
    In this article, a localisation result is proved for the biased random walk on the range of a simple random walk in high dimensions (d \geq 5). This demonstrates that, unlike in the supercritical percolation setting, a slowdown effect occurs as soon a non-trivial bias is introduced. The proof applies a decomposition of the underlying simple random walk path at its cut-times to relate the associated biased random walk to a one-dimensional random walk in a random environment in Sinai's regime

    Propulsive Force Measurements and Flow Behavior of Undulatory Swimmers at Low Reynolds Number

    Get PDF
    The swimming behavior of the nematode Caenorhabditis elegans is investigated in aqueous solutions of increasing viscosity. Detailed flow dynamics associated with the nematode’s swimming motion as well as propulsive force and power are obtained using particle tracking and velocimetry methods. We find that C. elegans delivers propulsive thrusts on the order of a few nanonewtons. Such findings are supported by values obtained using resistive force theory; the ratio of normal to tangential drag coefficients is estimated to be approximately 1.4. Over the range of solutions investigated here, the flow properties remain largely independent of viscosity. Velocity magnitudes of the flow away from the nematode body decay rapidly within less than a body length and collapse onto a single master curve. Overall, our findings support that C. elegans is an attractive living model to study the coupling between small-scale propulsion and low Reynolds number hydrodynamics
    • …
    corecore