13 research outputs found

    Investigating the Effects of Statins on Cellular Lipid Metabolism Using a Yeast Expression System

    Get PDF
    In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity) with introduced wild-type or mutant form of human HMGR (hHMGR) gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids

    Induction of the synthesis of an additional family of long-chain dolichols in the yeast Saccharomyces cerevisiae. Effect of starvation and ageing.

    No full text
    The yeast Saccharomyces cerevisiae strain W303 synthesizes in the early logarithmic phase of growth dolichols of 14-18 isoprene residues. The analysis of the polyisoprenoids present in the stationary phase revealed an additional family which proved to be also dolichols but of 19-24 isoprene residues, constituting 39% of the total dolichols. The transfer of early logarithmic phase cells to a starvation medium lacking glucose or nitrogen resulted in the synthesis of the longer chain dolichols. The additional family of dolichols represented 13.8% and 10.3% of total dolichols in the glucose and nitrogen deficient media, respectively. The level of dolichols in yeast cells increased with the age of the cultures. Since both families of dolichols are present in stationary phase cells we postulate that the longer chain dolichols may be responsible for the physico-chemical changes in cellular membranes allowing yeast cells to adapt to nutrient deficient conditions to maintain long-term viability

    Plastoquinone: possible involvement in plant disease resistance.

    No full text
    The plant Solanum nigrum treated with the pathogen Phytophthora infestans-derived elicitor responded by elevated reactive oxygen species (ROS) production, lipid peroxidation and lipoxygenase (EC 1.13.11.12) activity in comparison with control plants indicating that oxidative stress took place. We demonstrate that these events are accompanied by a significant increase in plastoquinone (PQ) level. It is postulated that PQ may be associated with mechanisms maintaining a tightly controlled balance between the accumulation of ROS and antioxidant activity that determines the full expression of effective defence

    Different statins produce highly divergent changes in gene expression profiles of human hepatoma cells: a pilot study

    No full text
    Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the key enzyme of the sterol biosynthesis pathway. Statin therapy is commonly regarded as well tolerated. However, serious adverse effects have also been reported, especially during high-dose statin therapy. The aim of our study was to investigate the effect of statins on gene expression profiles in human hepatoma HepG2 cells using Affymetrix Human Genome U133 Plus 2.0 arrays. Expression of 102, 857 and 1091 genes was changed substantially in HepG2 cells treated with simvastatin, fluvastatin and atorvastatin, respectively. Pathway and gene ontology analysis showed that many of the genes with changed expression levels were involved in a broad range of metabolic processes. The presented data clearly indicate substantial differences between the tested statins

    Nile Red staining of yeast lipid particles.

    No full text
    <p>Visualization of membranes composed of glycerophospholipids (red emission) and neutral lipids, triacyglycerols and steryl esters, in lipid particles (green emission). Cells were cultured overnight. The media were then supplemented with either 100 µM simvastatin or buffer and the cells were further grown with shaking for two hours at 30°C. To localize neutral lipids and glycerophospholipids in yeast cells, Nile Red staining was performed. Horizontal panels: upper glycrophospholipids at 543 nm excitation and 610 nm emission, middle neutral lipids at 488 nm excitation and 515/530 nm emission, lower merge of above panels. Vertical panels: B cells cultivated in buffer, S cells incubated for 2 h in buffer with simvastatin.</p

    Two dimensional chromatography of glycerophospholipids.

    No full text
    <p>The levels of all major glycerophospholipids were diminished by treatment with simvastatin. Panels: 1, 3, 5 glycerophospholipids from cells harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. Panels 2, 4, 6 glycerophospholipids from simvastatin treated cells harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. Abbreviations: PC phosphtidylcholine, PE phosphtidylethanolamine, PS phosphatidylserine, PI phosphtidylinositol, PA phosphtidic acid, LP lysoglycerophospholipid, FA fatty acid, NL neutral lipids.</p

    Decrease in sterols and squalene after simvastatin treatment.

    No full text
    <p>Lipids extracted from yeast cells were subjected to alkaline hydrolysis, purified and analysed by GC/MS.</p><p>Wt, wild-type yeast; H, yeast harbouring wild-type <i>hHMGR</i> gene; h, yeast harbouring the mutated <i>hHMGR</i> gene.</p

    TLC analysis of complex lipids.

    No full text
    <p>Effect of simvastatin treatment on glycerophospholipids, apparently not connected with mevalonate pathway. Lanes 1, 3, 5 lipids from cells harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. Lanes 2, 4, 6 lipids from cells treated with simvastatin harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. Abbreviations: SQ squalene, SM simvastatin metabolites, PE phosphtidylethanolamine, GPL glycerophospholipids, SF sphingomyeline.</p

    GC/MS analysis of sterols from yeast cells.

    No full text
    <p>Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the <i>hHMGR</i> gene. Panels 1, 3, 5 sterols from cells harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. Panels 2, 4, 6 sterols from cells treated with simvastatin harbouring the wild-type yeast, or the wild-type or mutated <i>hHMGR</i> gene, respectively. SQ squalene, Z zymosterol, E ergosterol, F fecosterol and isomers, L lanosterol and cholesta-8,14-dien 3-ol, 4.4-dimethyl (3∃, 5∀).</p
    corecore