833 research outputs found

    Gravity from the extension of spatial diffeomorphisms

    Full text link
    The possibility of the extension of spatial diffeomorphisms to a larger family of symmetries in a class of classical field theories is studied. The generator of the additional local symmetry contains a quadratic kinetic term and a potential term which can be a general (not necessarily local) functional of the metric. From the perspective of the foundation of Einstein's gravity our results are positive: The extended constraint algebra is either that of Einstein's gravity, or ultralocal gravity. If our goal is a simple modification of Einstein's gravity that for example makes it perturbatively renormalizable, as has recently been suggested, then our results show that there is no such theory within this class.Comment: 34 page

    Foundation Reinforcement of the Ipanema Beach Offshore Sewage Pipeline

    Get PDF
    The Ipanema Beach offshore sewage pipeline was installed thirty years ago in water depths up to 31m, in Rio de Janeiro, Brazil. It has a unique design, because steel piles were driven every 41 to 50m at joint along its length, in order to support it, keeping a constant gradient flow. These piles maintain the pipeline above mudline. After only a few years a first of these pile supports collapsed, allowing the pipeline to drop on the seabed, because of the occurrence of micro-cracks triggered by corrosion and environmental loads. Similar failures took place again before corrective measures could be taken. The main challenge faced at the end of 1999 was to solve the problem, thus avoiding any major consequence to the environment in the vicinity of the City of Rio de Janeiro, without having to interrupt the sewage pumping. This challenge was met by designing a non-conventional foundation reinforcement. In December 2001 the final support was reinforced. It is estimated that the entire life of the structure was increased by at least 30 years

    Are there phase transitions in information space?

    Get PDF
    The interplay between two basic quantities -- quantum communication and information -- is investigated. Quantum communication is an important resource for quantum states shared by two parties and is directly related to entanglement. Recently, the amount of local information that can be drawn from a state has been shown to be closely related to the non-local properties of the state. Here we consider both formation and extraction processes, and analyze informational resources as a function of quantum communication. The resulting diagrams in information space allow us to observe phase-like transitions when correlations become classical.Comment: 4 pages, 3 epsi figures, to appear in Phys. Rev. Let

    Layer-Resolved Ultrafast XUV Measurement of Hole Transport in a Ni-TiO2-Si Photoanode

    Get PDF
    Metal-oxide-semiconductor junctions are central to most electronic and optoelectronic devices. Here, the element-specificity of broadband extreme ultraviolet (XUV) ultrafast pulses is used to measure the charge transport and recombination kinetics in each layer of a Ni-TiO2-Si junction. After photoexcitation of silicon, holes are inferred to transport from Si to Ni ballistically in ~100 fs, resulting in spectral shifts in the Ni M2,3 XUV edge that are characteristic of holes and the absence of holes initially in TiO2. Meanwhile, the electrons are observed to remain on Si. After picoseconds, the transient hole population on Ni is observed to back-diffuse through the TiO2, shifting the Ti spectrum to higher oxidation state, followed by electron-hole recombination at the Si-TiO2 interface and in the Si bulk. Electrical properties, such as the hole diffusion constant in TiO2 and the initial hole mobility in Si, are fit from these transient spectra and match well with values reported previously

    A Thermodynamical Approach to Quantifying Quantum Correlations

    Get PDF
    We consider the amount of work which can be extracted from a heat bath using a bipartite state shared by two parties. In general it is less then the amount of work extractable when one party is in possession of the entire state. We derive bounds for this "work deficit" and calculate it explicitly for a number of different cases. For pure states the work deficit is exactly equal to the distillable entanglement of the state, and this is also achievable for maximally correlated states. In these cases a form of complementarity exists between physical work which can be extracted and distillable entanglement. The work deficit is a good measure of the quantum correlations in a state and provides a new paradigm for understanding quantum non-locality.Comment: 4 pages, Revtex4, title changed, caveat added to theore

    Designing optimal discrete-feedback thermodynamic engines

    Full text link
    Feedback can be utilized to convert information into useful work, making it an effective tool for increasing the performance of thermodynamic engines. Using feedback reversibility as a guiding principle, we devise a method for designing optimal feedback protocols for thermodynamic engines that extract all the information gained during feedback as work. Our method is based on the observation that in a feedback-reversible process the measurement and the time-reversal of the ensuing protocol both prepare the system in the same probabilistic state. We illustrate the utility of our method with two examples of the multi-particle Szilard engine.Comment: 15 pages, 5 figures, submitted to New J. Phy

    A quantum solution to the arrow-of-time dilemma

    Full text link
    The arrow of time dilemma: the laws of physics are invariant for time inversion, whereas the familiar phenomena we see everyday are not (i.e. entropy increases). I show that, within a quantum mechanical framework, all phenomena which leave a trail of information behind (and hence can be studied by physics) are those where entropy necessarily increases or remains constant. All phenomena where the entropy decreases must not leave any information of their having happened. This situation is completely indistinguishable from their not having happened at all. In the light of this observation, the second law of thermodynamics is reduced to a mere tautology: physics cannot study those processes where entropy has decreased, even if they were commonplace.Comment: Contains slightly more material than the published version (the additional material is clearly labeled in the latex source). Because of PRL's title policy, the leading "A" was left out of the title in the published pape

    Layer-resolved ultrafast extreme ultraviolet measurement of hole transport in a Ni-TiOâ‚‚-Si photoanode

    Get PDF
    Metal oxide semiconductor junctions are central to most electronic and optoelectronic devices, but ultrafast measurements of carrier transport have been limited to device-average measurements. Here, charge transport and recombination kinetics in each layer of a Ni-TiOâ‚‚-Si junction is measured using the element specificity of broadband extreme ultraviolet (XUV) ultrafast pulses. After silicon photoexcitation, holes are inferred to transport from Si to Ni ballistically in ~100 fs, resulting in characteristic spectral shifts in the XUV edges. Meanwhile, the electrons remain on Si. After picoseconds, the transient hole population on Ni is observed to back-diffuse through the TiOâ‚‚, shifting the Ti spectrum to a higher oxidation state, followed by electron-hole recombination at the Si-TiOâ‚‚ interface and in the Si bulk. Electrical properties, such as the hole diffusion constant in TiOâ‚‚ and the initial hole mobility in Si, are fit from these transient spectra and match well with values reported previously
    • …
    corecore