37 research outputs found
Subfunctionalization reduces the fitness cost of gene duplication in humans by buffering dosage imbalances
<p>Abstract</p> <p>Background</p> <p>Driven essentially by random genetic drift, subfunctionalization has been identified as a possible non-adaptive mechanism for the retention of duplicate genes in small-population species, where widespread deleterious mutations are likely to cause complementary loss of subfunctions across gene copies. Through subfunctionalization, duplicates become indispensable to maintain the functional requirements of the ancestral locus. Yet, gene duplication produces a dosage imbalance in the encoded proteins and thus, as investigated in this paper, subfunctionalization must be subject to the selective forces arising from the fitness bottleneck introduced by the duplication event.</p> <p>Results</p> <p>We show that, while arising from random drift, subfunctionalization must be inescapably subject to selective forces, since the diversification of expression patterns across paralogs mitigates duplication-related dosage imbalances in the concentrations of encoded proteins. Dosage imbalance effects become paramount when proteins rely on obligatory associations to maintain their structural integrity, and are expected to be weaker when protein complexation is ephemeral or adventitious. To establish the buffering effect of subfunctionalization on selection pressure, we determine the packing quality of encoded proteins, an established indicator of dosage sensitivity, and correlate this parameter with the extent of paralog segregation in humans, using species with larger population -and more efficient selection- as controls.</p> <p>Conclusions</p> <p>Recognizing the role of subfunctionalization as a dosage-imbalance buffer in gene duplication events enabled us to reconcile its mechanistic nonadaptive origin with its adaptive role as an enabler of the evolution of genetic redundancy. This constructive role was established in this paper by proving the following assertion: <it>If subfunctionalization is indeed adaptive, its effect on paralog segregation should scale with the dosage sensitivity of the duplicated genes</it>. Thus, subfunctionalization becomes adaptive in response to the selection forces arising from the fitness bottleneck imposed by gene duplication.</p
TSPYL2 Is Important for G1 Checkpoint Maintenance upon DNA Damage
Nucleosome assembly proteins play important roles in chromatin remodeling, which determines gene expression, cell proliferation and terminal differentiation. Testis specific protein, Y-encoded-like 2 (TSPYL2) is a nucleosome assembly protein expressed in neuronal precursors and mature neurons. Previous studies have shown that TSPYL2 binds cyclin B and inhibits cell proliferation in cultured cells suggesting a role in cell cycle regulation. To investigate the physiological significance of TSPYL2 in the control of cell cycle, we generated mice with targeted disruption of Tspyl2. These mutant mice appear grossly normal, have normal life span and do not exhibit increased tumor incidence. To define the role of TSPYL2 in DNA repair, checkpoint arrest and apoptosis, primary embryonic fibroblasts and thymocytes from Tspyl2 deficient mice were isolated and examined under unperturbed and stressed conditions. We show that mutant fibroblasts are impaired in G1 arrest under the situation of DNA damage induced by gamma irradiation. This is mainly attributed to the defective activation of p21 transcription despite proper p53 protein accumulation, suggesting that TSPYL2 is additionally required for p21 induction. TSPYL2 serves a biological role in maintaining the G1 checkpoint under stress condition
Versican G3 Promotes Mouse Mammary Tumor Cell Growth, Migration, and Metastasis by Influencing EGF Receptor Signaling
Increased versican expression in breast tumors is predictive of relapse and has negative impact on survival rates. The C-terminal G3 domain of versican influences local and systemic tumor invasiveness in pre-clinical murine models. However, the mechanism(s) by which G3 influences breast tumor growth and metastasis is not well characterized. Here we evaluated the expression of versican in mouse mammary tumor cell lines observing that 4T1 cells expressed highest levels while 66c14 cells expressed low levels. We exogenously expressed a G3 construct in 66c14 cells and analyzed its effects on cell proliferation, migration, cell cycle progression, and EGFR signaling. Experiments in a syngeneic orthotopic animal model demonstrated that G3 promoted tumor growth and systemic metastasis in vivo. Activation of pERK correlated with high levels of G3 expression. In vitro, G3 enhanced breast cancer cell proliferation and migration by up-regulating EGFR signaling, and enhanced cell motility through chemotactic mechanisms to bone stromal cells, which was prevented by inhibitor AG 1478. G3 expressing cells demonstrated increased CDK2 and GSK-3β (S9P) expression, which were related to cell growth. The activity of G3 on mouse mammary tumor cell growth, migration and its effect on spontaneous metastasis to bone in an orthotopic model was modulated by up-regulating the EGFR-mediated signaling pathway. Taken together, EGFR-signaling appears to be an important pathway in versican G3-mediated breast cancer tumor invasiveness and metastasis
Comprehensive evaluation of the MBT STAR-BL module for simultaneous bacterial identification and β-lactamase-mediated resistance detection in Gram-negative rods from cultured isolates and positive blood cultures
2017-2018 > Academic research: refereed > Publication in refereed journal201808 bcrcVersion of RecordPublishe