2 research outputs found

    Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 1

    Get PDF
    The AER two-dimensional chemistry-transport model is used to study the effect on stratospheric ozone (O3) from operations of supersonic and subsonic aircraft. The study is based on six emission scenarios provided to AER. The study showed that: (1) the O3 response is dominated by the portion of the emitted nitrogen compounds that is entrained in the stratosphere; (2) the entrainment is a sensitive function of the altitude at which the material is injected; (3) the O3 removal efficiency of the emitted material depends on the concentrations of trace gases in the background atmosphere; and (4) evaluation of the impact of fleet operations in the future atmosphere must take into account the expected changes in trace gas concentrations from other activities. Areas for model improvements in future studies are also discussed

    Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 2

    Get PDF
    The AER two-dimensional chemistry-transport model is used to study the effect of supersonic and subsonic aircraft operation in the 2010 atmosphere on stratospheric ozone (O3). The results show that: (1) the calculated O3 response is smaller in the 2010 atmosphere compared to previous calculations performed in the 1980 atmosphere; (2) with the emissions provided, the calculated decrease in O3 column is less than 1 percent; and (3) the effect of model grid resolution on O3 response is small provided that the physics is not modified
    corecore