3 research outputs found

    Seedling growth declines in warmed tropical forest soils

    Get PDF
    The response of plants to a warming climate could have a large feedback on further climatic change. This feedback is especially important for tropical forests, where the global peak in plant productivity and biodiversity occurs. Here we test the response of tropical forest tree seedling growth, photosynthesis and herbivory to 3 years of in situ full-soil profile warming. We studied six species, three of which are known nitrogen-fixers and we hypothesized that the warming response of growth will be mediated by nutrient availability to plants. Across species, growth was significantly lower in warmed soil compared to soil at ambient temperature, and the same pattern was observed for light-saturated photosynthesis, pointing toward a growth decline associated with decreased C fixation. Within species, the relative growth decline was significant for two species, Inga laurina and Tachigali versicolor, both of which are N-fixers. Together our results suggest a growth decline may have resulted from a negative effect of warming on N-fixation, rather than via changes in nutrient mineralization from soil organic matter, which was unchanged for N and increased for P during the dry-to-wet season transition. Overall, our study demonstrates that belowground warming causes species-specific declines in the growth and photosynthesis of seedlings, with a suggestion—requiring further investigation—that this growth decline is larger in N-fixing species

    Zinc–Nickel Alloy Electrodeposition: Characterization, Properties, Multilayers and Composites

    No full text

    Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    No full text
    corecore