2 research outputs found

    When does cyclic dominance lead to stable spiral waves?

    Get PDF
    Species diversity in ecosystems is often accompanied by characteristic spatio-temporal patterns. Here, we consider a generic two-dimensional population model and study the spiraling patterns arising from the combined effects of cyclic dominance of three species, mutation, pair-exchange and individual hopping. The dynamics is characterized by nonlinear mobility and a Hopf bifurcation around which the system's four-phase state diagram is inferred from a complex Ginzburg-Landau equation derived using a perturbative multiscale expansion. While the dynamics is generally characterized by spiraling patterns, we show that spiral waves are stable in only one of the four phases. Furthermore, we characterize a phase where nonlinearity leads to the annihilation of spirals and to the spatially uniform dominance of each species in turn. Away from the Hopf bifurcation, when the coexistence fixed point is unstable, the spiraling patterns are also affected by the nonlinear diffusion

    Cyclic dominance in evolutionary games: A review

    No full text
    Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator鈥損rey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock鈥損aper鈥搒cissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg鈥揕andau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined
    corecore