24 research outputs found

    Effects of Noise-Induced Hearing Loss at Young Age on Voice Onset Time and Gap-in-Noise Representations in Adult Cat Primary Auditory Cortex

    No full text
    Here we show that mild hearing loss induced by noise exposure in early age causes a decrease in neural temporal resolution when measured in adulthood. We investigated the effect of this chronic hearing loss on the representation of a voice onset time (VOT) and a gap-duration continuum in primary auditory cortex (AI) in cats, which were exposed at the age of 6 weeks to a 120-dB SPL, 5-kHz 1/3 octave noise band for 2 h. The resulting hearing loss measured using auditory brainstem responses and cortical multiunit thresholds at 4–6 months of age was 20–40 dB between 1 and 32 kHz. Multiple single-unit activity was recorded in seven noise-exposed cats and nine control cats related to the presentation of a/ba/–/pa/ continuum in which VOT was varied in 5-ms step from 0 to 70 ms. We also obtained data for noise bursts with gaps, of duration equal to the VOT, embedded in noise 5 ms after the onset. Both stimuli were presented at 65 dB SPL. Minimum VOT and early-gap duration were defined as the lowest value in which an on-response, significantly above the spontaneous activity, to both the leading and trailing noise bursts or vowel was obtained. The mild chronic noise-induced hearing loss increased the minimum detectable VOT and gap duration by 10 ms. We also analyzed the maximum firing rate (FRmax) and the latency of the responses as a function of VOT and gap duration and found a significant reduction in the FRmax to the trailing noise burst for gap durations above 50 ms. This suggests that mild hearing loss acquired in early age may affect cortical temporal processing in adulthood

    Encoding Intensity in Ventral Cochlear Nucleus Following Acoustic Trauma: Implications for Loudness Recruitment

    No full text
    Loudness recruitment, an abnormally rapid growth of perceived loudness with sound level, is a common symptom of sensorineural hearing loss. Following acoustic trauma, auditory-nerve rate responses are reduced, and rate grows more slowly with sound level, which seems inconsistent with recruitment (Heinz et al., J. Assoc. Res. Otolaryngol. 6:91–105, 2005). However, rate-level functions (RLFs) in the central nervous system may increase in either slope or saturation value following trauma (e.g., Salvi et al., Hear. Res. 147:261–274, 2000), suggesting that recruitment may arise from central changes. In this paper, we studied RLFs of neurons in ventral cochlear nucleus (VCN) of the cat after acoustic trauma. Trauma did not change the general properties of VCN neurons, and the usual VCN functional classifications remained valid (chopper, primary-like, onset, etc.). After trauma, non-primary-like neurons, most noticeably choppers, exhibited elevated maximum discharge rates and steeper RLFs for frequencies at and near best frequency (BF). Primary-like neurons showed the opposite changes. To relate the neurons’ responses to recruitment, rate-balance functions were computed; these show the sound level required to give equal rates in a normal and a traumatized ear and are analogous to loudness balance functions that show the sound levels giving equal perceptual loudness in the two ears of a monaurally hearing-impaired person. The rate-balance functions showed recruitment-like steepening of their slopes in non-primary-like neurons in all conditions. However, primary-like neurons showed recruitment-like behavior only when rates were summated across neurons of all BFs. These results suggest that the non-primary-like, especially chopper, neurons may be the most peripheral site of the physiological changes in the brain that underlie recruitment
    corecore