2 research outputs found

    Characterization of new, efficient Mycobacterium tuberculosis topoisomerase-I inhibitors and their interaction with human ABC multidrug transporters

    No full text
    Drug resistant tuberculosis (TB) is a major worldwide health problem. In addition to the bacterial mechanisms, human drug transporters limiting the cellular accumulation and the pharmacological disposition of drugs also influence the efficacy of treatment. Mycobacterium tuberculosis topoisomerase-I (MtTopo-I) is a promising target for antimicrobial treatment. In our previous work we have identified several hit compounds targeting the MtTopo-I by in silico docking. Here we expand the scope of the compounds around three scaffolds associated with potent MtTopo-I inhibition. In addition to measuring the effect of newly generated compounds on MtTopo-I activity, we characterized the compounds' antimicrobial activity, toxicity in human cells, and interactions with human multidrug transporters. Some of the newly developed MtTopo-I inhibitors have strong antimicrobial activity and do not harm mammalian cells. Moreover, our studies revealed significant human ABC drug transporter interactions for several MtTopo-I compounds that may modify their ADME-Tox parameters and cellular effects. Promising new drug candidates may be selected based on these studies for further anti-TB drug development

    Lead selection and characterization of antitubercular compounds using the Nested Chemical Library

    No full text
    Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library(TM) using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 mu M and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. (C) 2015 Elsevier Ltd. All rights reserved
    corecore